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ABSTRACT

The four-dimensional (4-D) cardiac MR images contain rich information about

the static and dynamic properties of the heart, which were not fully utilized in clin-

ical practice for quantitative analysis – a difficult task for humans, which can be

achieved by computer-aided image analysis and diagnosis. In this thesis, the 4-D

Active Appearance Model (AAM) was used to achieve highly automated computer

segmentation of the left and right ventricles (LV and RV) and the diagnosis of nor-

mal and tetralogy of Fallot (TOF) patients. The whole process was implemented

in four stages: data construction, model construction, computer segmentation, and

computer-aided diagnosis.

The data construction stage overcame most inherent limitations of cardiac MR

imaging and produced high-quality 4-D ventricular image with isotropic voxels, com-

plete coverage and no respiratory motion artifacts. A manual tracing application

was developed to trace the ventricular surfaces in a true 4-D context and produced

accurate independent standard for model construction and segmentation validation.

In the model construction stage, the 4-D AAMs were constructed using a custom

designed automatic landmarking and texture mapping procedure with high efficiency.

In the computer segmentation stage, the 4-D AAMs were applied to segment the

left and right ventricles of 25 normal and 25 TOF patient scans. The segmentation

achieved accurate results measured by signed surface positioning errors. On normal

hearts, the average signed errors were 0.3±2.3 mm for LV and 0.1±3.4 mm for RV.

On TOF hearts with large shape variability, the errors were -1.5±3.2 mm for LV and
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-0.9±4.3 mm for RV. Other error metrics such as relative overlapping also indicated

good segmentation accuracies.

In the computer-aided diagnosis stage, 100% normal/TOF classification was achieved

using the novel 4-D ventricular function indices – the shape modal indices. The lon-

gitudinal analysis performed on subjects with multiple annual scans showed that the

normal subjects exhibited smaller variances of these 4-D indices than TOF patients,

which demonstrated the potential of using them as disease status determinants. In

addition, the quantitative 4-D indices provided more information about the dynamic

properties of the heart and identified patient-specific features that were not sensed

by human expert observers.
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CHAPTER 1
INTRODUCTION

The state-of-the-art medical imaging techniques are capable of producing four-

dimensional images with high spatial and temporal resolutions. They provide the

physicians with more direct knowledge about the static and dynamic properties of

the target organ and enable more accurate and reliable diagnosis. However, the rich

information contained in these images is not fully utilized for quantitative analysis –

a difficult task for humans, which can be achieved by computer-aided image analysis

and diagnosis.

The medical image analysis performed by a human expert accomplishes two tasks.

First, the target organ in the image is identified. Second, a set of features of the target

organ are extracted and used to form the diagnoses: normal or diseased, the disease

severity, and the associated potential risks. The success of this human approach re-

lies on the knowledge formed in a ‘average-and-difference’ manner. In cardiac image

analysis, the ‘average’ knowledge about the appearance of the heart is used to locate

the cardiac borders and roughly identify whether the subject is normal or diseased.

The ‘difference’ part of the knowledge describes how much a certain heart can dif-

fer from the average heart and is used to achieve accurate cardiac border locations

and disease stage identifications. The human nature determines that the forming of

such ‘average-and-difference’ knowledge is a closed-loop process, the ‘average’ and

‘difference’ are constantly learned and refined with the accumulation of experience.

The computer-aided medical image analysis performs the same tasks as humans
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by using quantitative features to form decisions, but translating subjective human

knowledge to mathematical expressions often suffers from over-simplification and the

ability of learning from experience is often lost. An important observation of the

nature of the human’s ‘average-and-difference’ knowledge is that it can be described

by a statistical model in which the ‘average’ is the mean and ‘difference’ is the second

and higher orders of statistics. The computer-based methods that form, learn, and

utilize such statistical information embedded in the human knowledge and closely

emulate the closed-loop human process are the model-based analyses, which also have

a bonus advantage of being able to identify subtle but important features that are

often invisible to human eyes.

In this study, the model-based approach was applied to the segmentation and

diagnosis of a specific congenital heart disease – the post-operative tetralogy of Fallot.

The implementation and capability of the model-based approach in four-dimensional

were studied using magnetic resonance images.

1.1 Tetralogy of Fallot

Congenital heart disease is a broad term refers to abnormalities of the cardiac

structure and function caused by abnormal or disordered heart development before

birth. Described in 1672 by Niels Stensen and in 1888 by Etienne Fallot, the tetralogy

of Fallot (TOF) is a combination of four heart defects that cause insufficiently oxy-

genated blood to be pumped to the body. It occurs in approximately 5 out of 10,000

infants and accounts for 10–15% of all congenital heart diseases. Figure 1.1 shows

the classic form of TOF that includes the following four defects [1–3,28].
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Tetralogy of Fallot Normal heart

ventricular 

septal defect

Pulmonic 

stenosis

Overriding aorta

Right ventricular

 hypertrophy

Figure 1.1: The structure of the normal heart and four defects of tetralogy of Fallot.
(Public domain image made by Mariana Ruiz Villarreal.)

1. Ventricular septal defect (VSD): A hole between the two ventricles of the heart.

It is centered around the most superior aspect of the septum and is often single

and large.

2. Pulmonic stenosis : Right ventricular outflow tract obstruction, a narrowing

at or just below the pulmonary valve. The stenosis is mostly the result of hy-

pertrophy of the septoparietal trabeculae, however the deviated outlet septum

is believed to play a role.

3. Overriding aorta: The aortic valve is not restricted to the left ventricle, thus

having bi-ventricular connections. The aortic root can be moved anteriorly or

override the septal defect, but it is still on the right side of the pulmonary

artery root.

4. Right ventricular hypertrophy : The right ventricle is more muscular than nor-

mal. Due to the mis-arrangement of the external ventricular septum, the right
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ventricular wall increases in size to deal with the increased obstruction to the

right outflow tract. This feature is now generally agreed to be a secondary

anomaly, as the level of hypertrophy generally increases with age.

The common treatment for TOF is surgery. A temporary operation may be done

at first if the infant is small and the complete repair comes later. The typical tem-

porary operation is a shunt operation performed to provide adequate blood flow to

the lung and to allow the infant to grow big enough for a full repair. The shunt

is built between the aorta and the pulmonary artery and will be removed in the full

repair. In the complete repair, the ventricular septal defect is closed with a patch, the

right ventricular outflow tract is opened by removing some thickened muscle below

the pulmonary valve, the pulmonary valve is repaired or removed, and the peripheral

pulmonary arteries that go to both lungs are enlarged. Sometimes a tube is also

placed between the right ventricle and the pulmonary artery and this procedure is

called a Rastelli repair.

After the successful complete repair, the TOF patients still need regular follow-

ups since several long-term complications and risks may develop and therefore need

more surgeries or medications. Some common complications are listed below [49].

• Right ventricular failure: It may happen especially if the surgery created severe

pulmonary valve insufficiency, the regurgitation of blood backwards from the

pulmonary artery into the right ventricle.

• Electrical conduction abnormalities: Every TOF patient has right bundle branch

block secondary to the congenital VSD. Sewing the patch into the ventricular
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septum can create heart block or failure of the upper atria to conduct or com-

municate with the lower ventricles. A permanent pacemaker is occasionally

needed.

• Arrhythmias: The surgery on the ventricles can introduce an infrequent but

life-threatening arrhythmia – postoperative ventricular tachycardia.

• Residual hole in the ventricular septum: Another possible outcome, with oxy-

genated blood passing from the left side of the heart to the right (shunting).

It is essential to monitor the changes of cardiac function for TOF patients before

and after surgery with lifetime follow-up care. Since it is not preferred to operate on

infants whose hearts are still growing and can still function ‘normally’ by providing

enough oxygenated blood to the body, the cardiac function is an important determi-

nant of the necessity and optimal timing of the surgery. After surgery, the cardiac

function assessment helps the physicians to identify any potential risks and compli-

cations. The cardiac function indices that are important for TOF patients follow-up

care are the indicators of the ventricular function.

1.2 Ventricular Function Analysis

1.2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is widely used in clinical ventricular func-

tional analysis due to its advantages such as high spatial and temporal resolutions,

favorable signal-to-noise ratio (SNR), and flexible imaging locations. Cardiovascu-

lar Magnetic Resonance (CMR) refers to the techniques and protocols focused on

imaging of the heart.
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Each CMR image is a 2-D image acquired from a slice of the heart. In order

to reduce the scan time and achieve desired spatial resolution and SNR, the slice

thickness is often chosen to be larger than the in-plane resolution. A 3-D image

representing the whole heart is composed by stacking of CMR images and the resulting

3-D image therefore has anisotropic voxels. A typical voxel size of a ventricular CMR

image is 1.5× 1.5×8mm, where 8mm is the slice thickness and 1.5mm is the in-plane

resolution.

A 4-D (3-D+time) image representation of the heart is acquired from multiple

cardiac cycles. To acquire a 4-D image of a complete cardiac cycle with N phases,

ECG gating is used to trigger the data acquisition. A cardiac cycle is defined as the

time between two peaks of the ECG R-wave. Each R-peak triggers the acquisition

of N images from one fixed slice location at all phases of a cardiac cycle until im-

ages from all prescribed slices are acquired. The resulting 4-D image is a composite

image constructed from multiple cardiac cycles and therefore may have the following

artifacts.

• The anisotropic imaging voxel may introduce partial volume effect – a loss of

resolution caused by multiple features present in the same imaging voxel. For

example, a voxel may contains both water and fat and the resulting image

intensity is then neither of fat nor of water.

• The motion artifact caused by motion of the entire or part of the object during

acquisition. It typically results in blurring of images and/or shifting of target

object in images acquired from different breathing phases.
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• Flow artifact caused by flowing blood or fluids in the body.

1.2.2 Clinical Ventricular MR Imaging

Two types of CMR image sequences are commonly used in ventricle analysis: the

long-axis view and short-axis view. Figure 1.2 shows some sample of such images.

At the beginning of a CMR scan, a set of localizer images are acquired from three

standard orthogonal orientations (transverse, sagittal and coronal views) with large

field of view. From them, the location and orientation of the heart is approximated

and then a four-chamber slice is selected as shown in Figure 1.2a where all four heart

chambers, the left and right ventricles and atria, are clearly visible.

(a) (b)

Figure 1.2: The long- and short-axis views of the heart. (a) A long-axis (four-
chamber) image. (b) The short-axis images from different locations.

Based on the four-chamber slice, the long-axis images are acquired from planes

parallel to the four-chamber slice with constant slice thickness. Note that not all

long-axis images contain clear view of all four heart chambers. On the four-chamber
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slice, the long-axis of the left ventricle (LV) is estimated by connecting the LV apex

and the center of the LV base as shown in Figure 1.2a. The short-axis images are

then acquired from planes perpendicular to both the LV long-axis and the long-axis

imaging planes. Four sample short-axis view images from the ventricular apexes, mid-

sections, bases, and atria are shown in Figure 1.2b and their approximate imaging

plane locations are marked in Figure 1.2a.

1.2.3 Ventricular Image Analysis

The conventional ventricular MR image analysis is performed only on the short-

axis images using expert manual tracing. Two LV cardiac borders, the endocardial

and epicardial borders, can be traced. Only one right ventricle (RV) border can

be identified due to the insufficient contrast of the RV myocardium on the short-

axis images. Figure 1.3 shows several examples of the long- and short-axis images

with manual tracings. On the short-axis images, the LV endocardial border is not

always defined at locations with maximum intensity gradients. The papillary muscle

is included in the blood pool so the LV endocardial border has a circular shape.

Only half of the LV epicardial border can be easily identified while the other half

has to be estimated. The manual tracing of the RV involves some estimation in the

context of the neighboring anatomic structures. Finding ventricular bases is difficult

on the short-axis images but relatively easy on the long-axis images. Although the

ventricular valves are almost invisible, their plane locations can be estimated by

humans when the atria are visible.

The manual tracings are often performed only on two cardiac phases, the end-
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(a) (b) (c)

Figure 1.3: Examples of ventricular images with manual tracings. (a,b) The short-axis
image tracings. (c) The long-axis image tracing.

diastole and the end-systole, identified from visual inspection of changes of the LV in

size. Several ventricular function indices can be derived. The ventricular volume is

often calculated as the summation of ventricular areas enclosed by the cardiac borders

of all slices multiplied by the slice thickness. The LV mass can be derived from the LV

myocardium volume. The ejection fraction (EF) is one of the important ventricular

function indices derived from end-diastolic volume (EDV) and end-systolic volume

(ESV) as

EF =
EDV − ESV

EDV
× 100% (1.1)

It has long been noticed that the major source of error in these volumetric mea-

surements derived from the short-axis images is the inclusion or exclusion of slices

at the level of the ventricular bases [20, 38]. The MR images with anisotropic voxels

provide incomplete information and the valves that separate ventricles and atria are

almost invisible on short-axis images. The partial volume effects at the ventricular

bases make the identification of the most basal slice more difficult [32]. In clinical
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practice, the ventricle coverage is often sacrificed for consistency and a common crite-

rion for defining the ventricular base is to include any short-axis image that contains

at least 50% circumferential extent of clearly identifiable myocardium. It is also com-

mon to include the papillary muscle in the LV blood pool [46]. This criterion and

the partial volume effects can been seen in Figure 1.3, especially in base and apex

images.

Even with the defined rules for short-axis image tracing, the inter- and intra-

observer variabilities still cannot be eliminated. On the other hand, the apex, the

mitral and the tricuspid valve planes can be easily identified in the long-axis view

images. Several methods that utilize long-axis images were proposed and shown

to have improved coverage of the LV. The method proposed by Bloomer et al. [6]

uses the radial long-axis images in LV volume measurement. Swingen et al. [46]

proposed a feedback-assisted method that puts guide points on both the long- and

short-axis images and uses guide points to reconstruct the LV in 3-D. Note that these

methods only apply to the LV whose shape is more regular and cylindrical, the shape

information embedded in the long-axis images is only partially utilized.

1.2.4 Limitations

As a composite image, the 4-D MR image suffers from anisotropic voxels and in-

herent MR artifacts. In addition, some imperfections of the MR imaging protocol also

affect the resulting image quality. Such imperfections include inaccurate estimation

of the long-axis plane orientation and LV long-axis direction, inaccurate short-axis

plane orientation, and insufficient number of slices to cover the heart completely.
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The manual tracing of cardiac borders is a tedious task with inevitable inter-

and intra-observer variabilities. The ventricular volumes calculated are only rough

approximations. The resulting volumetric indices are therefore inaccurate and contain

no shape information. In addition, these indices are only derived from one or two

cardiac phases and cannot fully describe the 4-D nature the heart.

1.3 Motivations

In 4-D ventricular MR images, more static and dynamic information of the heart is

visible in high resolution and quality and more features of congenital heart diseases are

found and intensively studied. But achieving automated quantitative measurements

of these features and using them in patient care as reliable disease indicators are often

difficult mainly due to the lack of computer segmentation and analysis methods.

The model-based segmentation methods, specifically, active shape model (ASM)

[14, 16] and active appearance model (AAM) [13] are well suited for the ventricular

segmentation task. During the past decades, these methods have been successfully

applied to ventricular segmentation of MR images in 2-D [37], 3-D [36, 48, 50], bi-

temporal 3-D [45], and recently 4-D [39]. But the common pitfall of the current 3-D

and 4-D applications in MR images is that only the short-axis images are used and

the conventional manual tracings on them are treated as the independent standard

and used to construct the model. The problems of the incomplete and inconsistent

ventricle coverage are not fully addressed.

One of the MR artifacts, the respiratory motion artifact, can be modeled as simple

shifting or mis-alignment of heart in 2-D images [21] and therefore can be solved by
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rigid registration. A 3-D version of the motion correction is proposed by Stegmann et

al. [44] but only utilizes short-axis images and thus relies on the assumption that the

LV long-axis is always perpendicular to the short-axis imaging plane, which is often

not true in the clinical image data.

Most importantly, the long-axis images, which are always acquired in standard

ventricular MR protocol, are not fully utilized or not considered at all in most current

ventricular data construction and model-based segmentation approaches.

1.4 Goals

The final goal of this research is to provide quantitative disease indices for TOF

that can be used to achieve computer-aided diagnosis (CAD). To achieve this, a set of

novel 4-D ventricular function indices that fully or partially describe the 4-D nature of

the ventricles are proposed. As a proof of concept, the feasibility of using these indices

to achieve normal and TOF classification was fully evaluated. Then the potential of

using these indices as disease stage determinants and early indicators of future TOF

induced cardiac risks was explored.

In order to derive 4-D function indices, the accurate 4-D segmentation of the left

and right ventricles is required. The 4-D AAM segmentation was used due to its

advantages of incorporated human knowledge and inherent capability of producing

4-D function indices. In this research, an efficient 4-D AAM method was implemented

and used for ventricle segmentation.

The success of AAM relies on high quality image and accurate manual tracings.

In this reserach, the 4-D data construction procedure was developed for ventricular
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MR images, it include image data interpolation, motion correction, image fusion, true

4-D manual tracing and shape interpolation. Most importantly, the long-axis images

and the embedded shape information were fully utilized.

In summary, the whole cardiac MR analysis process is divided into four pipeline

stages, each with its own aim. Then the four goals to be achieved in this study are

listed as follows and their achievements are reviewed in 7.1 on page 108,

1. 4-D data construction: Build 4-D data sets (images and labeled volumes) that

describe the true 4-D nature of the ventricles with isotropic voxels, complete

ventricle coverage, and free of motion artifacts.

2. 4-D model construction: Develop efficient methods to build and train the 4-D

AAMs of the ventricles.

3. 4-D AAM segmentation: Use the created 4-D AAMs to achieve accurate 4-D

ventricular segmentations.

4. Computer-aided diagnosis: Develop novel 4-D ventricular function indices that

can describe the difference between normal and TOF subjects and test the

potentials of using them to achieve CAD of TOF prognosis.
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CHAPTER 2
STATISTICAL MODELS IN MEDICAL IMAGE ANALYSIS

2.1 Introduction

Most image segmentation methods can be categorized as either image-based or

model-based. The image-based methods extract image features such as pixel inten-

sity and edge strength and combine them with some prior knowledge about the target

object to achieve segmentation. It is always difficult to translate complex and subjec-

tive prior knowledge into a simple mathematical form. Such limitation prevents the

image-based approach from achieving satisfactory results in ventricular segmentation.

In the model-based segmentation approach, a statistical model is first created

and trained from a population of manually traced samples so the human knowledge

embedded in the manual tracing is incorporated into the model. Then the automatic

segmentation becomes an iterative process, the model is fit onto the target image

and iteratively refined based on the knowledge embedded in the model and image

features. In this chapter the mathematical background and general procedure of two

major model-based methods, active shape model and active appearance model, are

described.

The general approach of CAD is to use some quantitative metrics to achieve

diagnosis. The design of a specific CAD method has two tasks: 1) identify metrics

to use and how to measure them; 2) choose appropriate classification method to

achieve diagnosis. The choice of metrics is often more important. The conventional

way of choosing metrics is the heuristic approach: identify metrics from experience
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and then test whether diagnosis is possible. In this case, finding the optimal set of

metrics is always difficult, it is also a process of mapping complex human knowledge

to quantitative measurements. There is no guarantee that the selected metrics are

the unique disease characteristics or they can utilize all the information provided by

the segmentation.

The statical model incorporates and closely emulates the ‘average-and-difference’

human knowledge and therefore becomes the appropriate choice of metrics. More

specifically, the statistical model implicitly translates the ‘average-and-difference’

knowledge into ‘mean-and-variance’ quantitative metrics which also contain most in-

formation provided the segmentation. The potential of using model-based approach

in CAD is fully explored in Chapter 6.

2.2 Active Shape Model

2.2.1 Point Distribution Model

In 1977, Harshman et al. [30] proposed a method to describe the tongue shape,

and the variations of tongue shape when pronouncing English vowels were analyzed.

This work suggested the feasibilities of using evenly distributed points as shape rep-

resentation, and using statistical analysis to model shape variations. In the early

1990’s, a model-based approach in shape analysis was proposed by Cootes and Tay-

lor [10,11,15,18] and named as Point Distribution Model (PDM).

In PDM, the shape of an object is represented by a set of n corresponding points

on its boundary called landmarks. The most important requirement of choosing

landmarks is the point correspondence, i.e., all the ith landmarks in the population
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must come from the ‘same’ location of the object. An example of landmarks selected

on a short-axis MR image is shown in Figure 2.1. With n defined landmarks, the

shape of an object is then written as a shape vector s

s = [x1, y1, z1, · · · , xn, yn, zn]T , or s = [x1, y1, · · · , xn, yn]T , (2.1)

where (xi, yi, zi) or (xi, yi) is the coordinate of the ith landmark. The dimensionality

of such shape vector is 3n for 3-D surface, 2n for 2-D contour.

(a) (b)

Figure 2.1: Landmarks defined on a short-axis MR image. (a) The original image.
(b) The landmarks (marked by +) representing the ventricular shape.

In order to analyze the shape variations, the information contained in the shape

vector must remain the same regardless of any scaling, rotation, and translation ap-

plied to the object. The effects of these Euclidean transforms must be removed first

to align all shapes to a common reference frame. The procedure of such shape align-

ment is known as the Procrustes Analysis [29] listed in Algorithm 2.1 and illustrated

using an example of aligning ventricular shapes in Figure 2.2.

The mean shape produced by the Procrustes Analysis is a first order statistical
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Input: Sample shape population, s1, s2, · · · , sM .
Output: Aligned shapes, s1, s2, · · · , sM , and a mean shape s.
Align the centroids all shapes to remove the effects of translation.1

Arbitrarily select a sample shape as the initial s.2

while s has not converged do3

for each si do4

Transform si so it is aligned to s.5

end6

Calculate a new s from the aligned si using7

s =
∑M

i=1
si

/
M. (2.2)

end8

Algorithm 2.1: The Procrustes Analysis

(a) (b) (c)

Figure 2.2: The Procrustes Analysis. The sample shapes before and after (a,b)
alignment. (c) The aligned landmarks have approximately Gaussian distributions.

description of the shape population. Figure 2.2c shows that the distribution of the

resulting landmarks is approximately Gaussian. The second order description, the

variance, can be found by Principal Component Analysis (PCA) [33]. The M N -

dimensional sample shape vectors, are treated as M points in a N -dimensional space

and they are often correlated. The PCA generates N new orthogonal bases (axes)

originated at the mean shape such that under these new bases, the correlation of
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samples is minimized.

Each such new basis, also called principal component or PCA mode, is a direction

vector and the projection of a sample onto it is a measurement of variance. The PCA

modes are often sorted such that the first mode represents the greatest variance of

the population and the following modes have decreasing variances. The decreasing

of variances makes it possible to approximate a sample with fewer modes and conse-

quently represent a sample vector in a more compact form. The effects and benefits

of applying PCA to a 2-D point cloud are shown in Figure 2.3. The procedure of

PCA is as follows.

x1

x2 Φ1

Φ2

s̄

x1

x2 Φ1

Φ2

s̄

sb

Figure 2.3: Applying PCA to 2-D points in (x1, x2) space produces components φ1

and φ2. A point s is approximated as s ≈ s + φ1b.

1. Compute the mean shape of the aligned shape population using equation (2.2).

2. Compute the correlation of the aligned shapes as a covariance matrix C.

C =
1

M
BBT , B = [(s1 − s)|(s2 − s)| · · · |(sM − s)] , (2.3)
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3. Transform C to a diagonal matrix Λ using eigen decomposition of C such that

CΦ = ΛΦ, and ΦTCΦ = Λ. (2.4)

The diagonal elements of Λ are the eigenvalues λi sorted as λi ≥ λi+1. The

columns of matrix Φ are the eigenvectors φi associated with λi.

4. Any shape vector s is then defined by s and the new bases specified by Φ as

s = s + Φb, i.e. b = Φ−1(s− s) = ΦT (s− s). (2.5)

The vector b is unique for each individual sample while s and Φ are common

for all samples. Then b becomes the new representation of s and is called modal

indices. The ith element of b, bi, is a quantitative measure of the derivation

between s and s along the ith principal component and is often referred as

the ith mode or the ith modal index of s.

5. Since the smaller the eigenvalue, the less its influence on the shape variance,

a cutoff z is selected using a pre-selected cutoff ratio α as

∑z

i=1
λi ≥ α

∑N

i=1
λi, 0 < α < 1. (2.6)

A typical value of α is 97%. The compact representation of the model and the
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sample is then achieved by

Φ = [φ1, φ2, · · · , φz], b = [b1, b2, · · · , bz]
T (2.7)

such that any shape vector s is approximated by

s ≈ s + Φb. (2.8)

The standard deviation σi of the ith PCA mode is
√

λi. If the vector b is con-

strained such that bi ∈ [−3
√

λi, 3
√

λi], 99.7% of the obsevations from the population

is covered. For each bi, varying its value introduces complex shape variations oth-

erwise cannot be described or quantitatively measured. An example of such shape

variations is shown in Figure 2.4.

1st mode

2nd mode
Mean−3σ Mean−1.5σ Mean Mean+1.5σ Mean+3σ

Figure 2.4: The shape variations associated with the two strongest shape modes.

In equation (2.3), the size of the covariance matrix C is N×N , and the complexity

of eigen decomposition is O(N3). However, if M � N , a smaller M ×M covariance
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matrix D is only needed as

D =
1

M
BTB. (2.9)

The eigen decomposition of D finds eigenvectors ΦD and eigenvalues ΛD and the

non-zeros eigenvalues solved for D are equal to the eigenvalues solved for C. The

eigenvectors ΦC solved for C are

ΦC = BΦD. (2.10)

The columns of ΦC must be normalized to unit magnitude to maintain orthonormality

requirement for the calculation of modal index vector b.

2.2.2 Active Shape Model Segmentation

The knowledge about the object shape embedded in the PDM can be used in

segmentation and this model-based segmentation method is called Active Shape Model

(ASM) [14,16]. The resulting segmentation in the target image space is defined as the

target shape s′, as the model shape s in the model space. The relationship between

the s′ and s is specified by a transform T such that s′ = T (s). The general procedure

of the ASM is listed in Algorithm 2.2.

The searching for more suitable landmark locations is the model refinement step.

The simplest way to do that is to search a new location for each landmark along the

normal direction of the current target shape. How to measure the suitability of the

candidate landmarks is learned from an extra training step.

For the ith landmark, from all the images in the population, k pixels are chosen
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Input: The target image. s, Λ, and Φ of the PDM.
Output: The target shape s′, the model shape s, and modal index vector b.
Initialize with s = s and b = 0.1

Estimate T to approximately fit s′ onto the target image.2

while b has not converged do3

Update s′ by moving landmarks to more suitable locations.4

Align updated s′ to s with a new T .5

s = T −1(s′).6

b = ΦT (s− s) and apply constraints of bi ∈ [−3
√

λi, 3
√

λi].7

s = s + Φb.8

s′ = T (s).9

end10

Algorithm 2.2: Active Shape Model segmentation

on each side along the normal direction of the object border. From these 2k + 1

pixels, the intensity derivatives are normalized and put into a profile vector gi. For

all such profile vectors, a profile model is created by calculating a mean profile gi and

a covariance matrix Gi. During the model refinement, a profile vector g is sampled

from the target image and its fitness is calculated by a Mahalanobis distance

f(g) = (g − gi)
TG−1

i (g − gi). (2.11)

The more suitable landmarks are chosen as the points with minimal Mahalanobis

distances.

This ASM method has inherent limitations, the intensity information such as the

texture pattern of the target object is not included in the model, and only part of

such information is utilized in the model refinement step.
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2.3 Active Appearance Model

2.3.1 Statistical Texture Model

The texture, the pixel intensity pattern, is another important feature of the object.

In order to model the texture, similar to the shape landmarking, the first step is to

form a texture vector t of pixel intensities. To satisfy the fixed length and point corre-

spondence requirements, the image has to be mapped to a shape-free reference frame

where the pixel correspondence can be defined. The straightforward but computa-

tional expensive approach for such shape-free mapping is to use elastic registration

of images.

A more efficient mapping method utilizes the existing shape vectors. A 2-D version

of such method is illustrated in Figure 2.5. On the mean shape of the PDM, a pixel

grid is defined first and the triangular mesh is built upon the landmarks as shown in

Figure 2.5a. Any point in the pixel grid is then uniquely associated with a triangle

and has its barycentric coordinate defined. Then the shape-free mapping is performed

in the barycentric coordinate system as illustrated in Figure 2.5b.

X2X

1X

α

β γ

X

1X

3X

2X
β

α

γ

X

3

(a) (b)

Figure 2.5: The 2-D shape-free texture mapping. (a) The mean shape is divided into
a set of triangles. (b) Specified by barycentric coordinates (α, β, γ), x is an unique
point within the triangle with various shapes.
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Analogous to the shape alignment step, the global intensity variations of brightness

and contrast need to be normalized. This iterative texture normalization procedure

is listed in Algorithm 2.3 and it produces a mean texture vector t of zero-mean and

unit-variance.

Input: Texture vectors, t1, t2, · · · , tM .
Output: Normalized texture vectors, t1, t2, · · · , tM , and a mean texture t.
Arbitrarily select one texture vector as t.1

while t has not converged do2

Normalize t as3

t ⇐ (t− µ(t)1)
/
σ(t). (2.12)

for each ti do4

Compute α and β by5

β = µ(ti), α =
(ti − β1) · (ti − β1)

(ti − β1) · t
. (2.13)

Align ti to t by6

ti ⇐ (ti − β1)
/
α. (2.14)

end7

Compute a new mean texture t as8

t =
∑M

i=1
ti

/
M. (2.15)

end9

Algorithm 2.3: Texture normalization

The PCA is applied to the normalized texture vectors and generates a statistical

texture model such that any sample texture vector can be approximated by

t ≈ t + Φb. (2.16)
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Figure 2.6 shows the texture variations associated with the first two modes using the

short-axis MR image example.

1st mode

2nd mode
Mean−3σ Mean−1.5σ Mean Mean+1.5σ Mean+3σ

Figure 2.6: The texture variations associated with two strongest PCA modes. The
shape is confined to the mean shape.

2.3.2 Statistical Appearance Model

The appearance, the combination of shape and texture, of the object is modeled

by analyzing the appearance vector a, the concatenation of shape modal index vector

bs and the texture modal index vector bt with appropriate weighting [12,17].

a =
[
Wsbs

bt

]
=

[
WsΦ

T
s (s− s)

ΦT
t (t− t)

]
, Ws = rI, r2 =

∑
i
λti

/∑
j
λsj

. (2.17)

The subscripts s and t indicate the parameters are from the shape and texture

models, respectively. The weighting factor Ws is a diagonal matrix used to compen-

sate the difference in units of the shape and texture models since the the shape model

is based on distance and the the texture model is based on intensity.

Applying another PCA to the appearance vector a yields the Statistical Appear-
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ance Model which approximates the appearance of an object by

a ≈ Φaba, (2.18)

where the subscript a indicates the parameters of the appearance model. Since the

weighting factor Ws is chosen such that the sum of all Wsbs and bt in the population

is zero, the appearance model has no mean appearance. The modal index vector ba

is the compact form of the appearance of the object and it can synthesize the shape

and texture of an object by

Φa =
[
Φas

Φat

]
, s = s + ΦsW

−1
s Φasba, t = t + ΦtΦatba (2.19)

Figure 2.7 shows the appearance variations associated with two strongest PCA

modes using the short-axis MR image example.

1st mode

2nd mode
Mean−3σ Mean−1.5σ Mean Mean+1.5σ Mean+3σ

Figure 2.7: The appearance variations associated with two strongest PCA modes.
The ‘mean’ is the combination of the mean shape and the mean texture.
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2.3.3 Active Appearance Model Segmentation

The statistical appearance model incorporates both shape and texture information

learned from manual segmentation and therefore can be used in segmentation, such

model-based segmentation method is Active Appearance Model (AAM) [12, 17]. The

general procedure of AAM segmentation is similar to the ASM segmentation. The

mean shape and texture are first fit to the target image, then the appearance model

is iteratively refined and PCA modes restricted.

In the model space, there exists the PCA appearance and model synthesized shape

and texture of the object as model vectors ba, s and t, where s and t are calculated

from ba. A transform Ts such that s′ = Ts(s) maps the model shape to target shape

s′ in the target image space. The target texture t′ is sampled based on s′ and mapped

back to model space by an image to model space mapping Tt(t
′). The goal of AAM

is to find the optimal ba, Ts and Tt that minimize the error metrics E of a texture

difference vector r as

E = rT r, r = t− Tt(t
′). (2.20)

For each sample in the population, its associated Ts, Tt and ba are already op-

timal after the AAM is constructed, a new r can be computed by displacing these

parameters away from the optimal p by δp to learn the relation between δp and r.

This learning process is the AAM training. The conventional training method is the

fixed Jacobian training, where the desired relation is specified by a Jacobian matrix
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R as

δp = −Rr(p), R =

[
∂r

∂p

T ∂r

∂p

]−1
∂r

∂p

T

. (2.21)

Although Ts, Tt and ba are typically correlated, they are often optimized separately

in practice to reduce the computational cost of the training. However, the estimation

of ∂r
∂p

is still expensive and is roughly approximated by

dri

dpj

=
∑

k
w(δpjk)(ri(p + δpjk)− ri(p)), (2.22)

where w(x) is a normalized Gaussian weighting function. The typical choices for

maximum parameter displacements are: 0.5σa of ba; 10% of scaling, 3–5 pixels of

translation, 10 degree of rotation for Ts; 10% for Tt. The number of values sampled

within the displacement range is typically 10 to 20.

The AAM training produces three Jocobians Rs, Rt, and Ra for model param-

eters Ts, Tt and ba, respectively. The AAM segmentation is then a model matching

process as listed in Algorithm 2.4. Two examples of applying the AAM segmentation

method on the short-axis MR images are shown in Figure 2.8, where the results of

five matching iterations are shown.

2.4 Hybrid Model-based Segmentation

The AAM is efficient in locating the target object and producing good results, but

the local shape accuracy is limited by the lack of shape details contained in the model

and the existing multiple local minimums in the model matching. On the other hand,

ASM is more flexible than AAM for it does not force texture constraints on the result.



www.manaraa.com

29

Input: The target image, Rs, Rt, and Ra, and the appearance model.
Output: The optimal model parameters Ts, Tt and ba of the target object and

the target shape s′.
Set ba = 0. Initialize Ts and Tt to place s′ approximately on the target image.1

Compute r and E using equation (2.20).2

while E has not converged do3

Compute δTs = −Rsr, δTt = −Rtr, and δba = −Rar.4

Set k = [1, 1.5, 0.5, 0.25, 0.125, · · · ], E ′ = E, and i = 15

while E ′ ≥ E do6

T ′
s = Ts + kiδTs, T ′

t = Tt + kiδTt, and b′a = ba + kiδba.7

Compute r′ and E ′ from T ′
s , T ′

t and b′a.8

if E ′ < E then9

Ts = T ′
s , Tt = T ′

t , ba = b′a, E = E ′, r = r′
10

else11

Set i = i + 1 to test the next value of k.12

end13

end14

end15

Algorithm 2.4: Active Appearance Model segmentation

Its extra freedom in shape deformation often provides the extra momentum needed

to bring the AAM model matching out of a local minimum and therefore improves

local shape accuracy. A hybrid segmentation approach was proposed by Mitchell et

al. [37] and was applied to 2-D segmentation of short-axis MR images. This approach

combines the strengths of AAM and ASM and overcomes their limitations. A sample

result is shown in Figure 2.9.

In the hybrid approach, the AAM is first performed to produce b(A)
s , b

(A)
t , and

T (A)
s . The ASM is then performed using the AAM result as the initialization, it

produces b(S)
s and T (S)

s . A hybrid appearance b(H)
a is then computed as

b(H)
a = [Φ(A)

a ]T
[
W

(A)
s (ρb(S)

s + (1− ρ)b(A)
s )

b
(A)
t

]
, (2.23)
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Figure 2.8: Two iteration sequences of 2-D AAM segmentations. The first column is
the target images.

The superscript (A) indicates AAM parameters and the superscript (S) indicates

ASM parameters. A hybrid shape transform T (H)
s is

T (H)
s = ρT (S)

s + (1− ρ)T (A)
s . (2.24)

(a) (b)

Figure 2.9: Comparison of segmentation accuracy. (a) Conventional AAM. (b)Hybrid
AAM/ASM segmentation.

The hybrid method can be easily fit into the AAM procedure listed in Algorithm

2.4, where each iteration of model matching is followed by the extra ASM and hybrid
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stage as described in equations (2.23, 2.24). A final AAM iteration is often preferred

so the resulting shape is ‘valid’.

2.5 Challenges of 4-D AAM

The most important requirement of any model-based segmentation is the model

must be constructed and trained on a population with high quality ground truths in

image as well as manual tracings. As to ventricular MR images, such ground truths

are difficult to acquire due to the inherent limitations of the MR images and the

manual tracing methods.

The methods and algorithms listed in this chapter can be directly extended to

4-D case once the ventricular shapes of a P -phase cardiac cycle is written as a 4-D

shape vector s as

s = [sT
(1), s

T
(2), · · · , sT

(P )]
T , (2.25)

where each s(i) is a 3-D shape vector as defined in equation (2.1). But creating

such 4-D shape vector manually is almost impossible, a good automated landmarking

algorithm is the key of 4-D AAM construction.

Increasing the image space from 2-D or 3-D to 4-D dramatically increases the

dimensionality of shape and texture vectors and the ASM and AAM will suffer from

the ‘curse of dimensionality’ in various aspects.

• To model the statistical properties of shape and texture vectors in a high-

dimensional space, large population is always preferred. But large population

of 4-D data, especially accurate manual tracings, are very difficult to acquire.
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• Due to the increased computational cost of error metrics E, including all pos-

sible values of model parameters in AAM training is impossible. Further sim-

plification, assuming the elements of model parameter are uncorrelated, is un-

avoidable. Such simplification can degrade the model training quality.

• Also due to the high cost of computing E, the 4-D AAM often cannot be

performed with as many as matching iterations as 2-D and 3-D AAMs.

• In 4-D AAM, more model parameters are to be optimized therefore there are

more local minimums in the parameter search space. The possibility of the

model matching stuck at a local minimum is increased.



www.manaraa.com

33

CHAPTER 3
4-D DATA CONSTRUCTION

3.1 4-D Image Construction

3.1.1 Image Data Management

The MRI scanners output acquired images as DICOM files that contain the im-

age data and various information associated with the image. A typical DICOM file

contains:

• The 2-D gray scale image data with 16-bit intensity resolution.

• Patient information such as name, hospital ID, sex, date of birth (anonymized

in the DICOM files used for this study ).

• MR sequence description added by the operator such as ‘true FISP short-axis’.

The exact information in this description is generally not well defined and varies.

• Geometric and timing information indicating where and when a 2-D slice image

is acquired. A slice is defined in the absolute MR scanner coordinate system

and is identified by: the coordinates of the upper-left corner, two unit vectors

indicating the directions of image axes, image width and height measured by

pixels, physical size of the pixels, the physical slice thickness, and a time offset

indicating the acquisition time with respect to the starting of a cardiac cycle –

the peak of ECG R-wave.

The number of DICOM files included in a complete 4-D MR study is very large.

Each imaging sequence contains 15–30 phases per cardiac cycle, with 5–15 slices

per phase. Besides the long- and short-axis sequences, other sequences such as 3-D
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localizers are also included. Although each DICOM file contains all the necessary

information for data reconstruction, searching through all the files for small piece of

information is expensive. To efficiently manage the 4-D MR data, the following data

management steps were performed.

1. Extract non-image information from all DICOM files. Sort and organize them

in a hierarchy fashion such that a complete study contains a four-level tree

from root to leaf as study ↪→ sequence ↪→ phase ↪→ slice. Record the tree

structure into a XML file.

2. Manually check and modify the XML files if necessary. The manual modi-

fication often involves assigning unique and consistent sequence descriptions.

Some operations such as merging or splitting some imperfectly described or

acquired data sequences are automated.

3. Based on the hierarchy data description, extract 2-D images from DICOM files

and combine them into series of 4-D ANALYZE images.

4. Write geometrics and timing information to customized ASCII data informa-

tion files, one for each 4-D image.

The DICOM standard is complicated and the exact information stored is scanner

dependent. The data management steps standardize the data format and file naming

scheme, remove dependency on DICOM standard and correct any error or inconsis-

tency in data description. Although the manual inspection and modification is a little

tedious, it only needs to be performed once. Most importantly, the number of files

used for a 4-D sequence is reduced from hundreds to three (ANALYZE header and
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image and a ASCII information file), which is more manageable.

3.1.2 Image Interpolation and Rotation

The next step is to construct 4-D images of isotropic voxels and fixed number of

phases per cardiac cycle by interpolation. The nearest-neighbor method is used in

temporal interpolation for two reasons. First, the MR protocol only guarantees that

the acquisition of the first phase is triggered by the ECG R-peak and approximately

90–100% of the cardiac cycle is covered by the sequence. Second, any higher order

temporal interpolation will introduce blurring of images.

After temporal interpolation, spatial interpolation is performed to produce isotropic

voxels in each 3-D image. The spatial interpolation of ventricular MR images is

mainly preformed along the Z axis that is perpendicular to the XY imaging plane.

The shifted linear interpolation [7] is used due to its two advantages: 1) the compu-

tational cost is close to that of the standard linear interpolation; 2) the SNR is close

to or higher than that of the cubic interpolation and the image edges are better pre-

served. It also agrees to the fact that any Z slice that is not adjacent to the sampling

point should have no contribution to the interpolation.

Image rotation is performed together with spatial interpolation. Based on the

imaging plane orientations, the MR images are rotated such that in the resulting 3-D

images built from short(long)-axis images, the XY plane is parallel to the short(long)-

axis imaging plane and the XZ plane is parallel to the long(short)-axis imaging plane.
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3.1.3 Imperfections of Ventricular MR Images

Figures 3.1 and 3.2 show several example 2-D slices of the interpolated and rotated

3-D images. The image rotation helps us to see the imperfections of ventricular

MR imaging protocol. An accurate estimated LV long-axis direction corresponds to

the image shown in Figure 3.1a, where the LV long-axis is approximately vertical.

Inaccurate LV long-axis direction estimations produce images shown in Figures 3.1b

and 3.1c.

(a) (b) (c)

Figure 3.1: Various LV long-axis direction estimations.

If the orientation of the long-axis imaging plane is correctly estimated, the re-

sulting short-axis should look like Figure 3.2a, where the RV is exactly on the left

side of the LV. Inaccurate long-axis imaging plane estimations make their associated

short-axis images look like Figures 3.2b and 3.2c, where the RVs are rotated.

The orientation of the heart plays a vital role in identifying the ventricular bases

and apexes in a 3-D context. The MR protocol imperfections make the manual tracing

in 3-D more difficult.
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(a) (b) (c)

Figure 3.2: Effects of various long-axis imaging plane orientation estimations.

3.1.4 Motion Correction and Image Fusion

After image interpolation and rotation, a 4-D short-axis (SA) image is recon-

structed from the original short-axis MR images and a 4-D long-axis (LA) image

from the original long-axis MR images. Two typical orthogonal slices of such recon-

structed 4-D images at end-diastole are shown in Figures 3.3a and 3.3b. The existing

respiratory motion artifacts are obvious in the bottom image of Figure 3.3a, where

the motion artifacts are reflected as mis-alignments of ventricles in the short-axis

slices, which agrees to the result of a study by Dornier et al. [21]. If the short-axis

MR images are acquired with accurate LV long-axis direction estimations, the motion

artifacts can be corrected by aligning the centroids of LV in the short-axis slices so

they form a line parallel to the Z axis of the SA image [44]. When the MR protocol

imperfections exist, applying this simple motion correction approach can potentially

change the ventricular shapes.

The long-axis view provides complementary information of the ventricles and was

utilized in this study to remove the dependency of accurate imaging plane orienta-

tions. The motion correction was achieved by registering (translation only) corre-
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sponding slices of SA and LA image. The top image of Figure 3.3a was aligned to

the top image of Figure 3.3b, then the bottom image of Figure 3.3b was aligned to

the bottom image of Figure 3.3a. The resulting images after motion correction are

shown in Figures 3.3c and 3.3d.

Due to the MR protocol variability and scan time constraints, the short-axis view

images may not cover the ventricles completely. The image quality of XZ slices

(bottom image of Figure 3.3c) is not as good as the corresponding slices from the

long-axis view (bottom image of Figure 3.3d) due to interpolation. As the final step,

the motion corrected SA and LA images are fused into a single 4-D image as shown

in Figure 3.3e, which has a better ventricle coverage as well as an improved image

quality.

SA LA SA LA fused

(a) (b) (c) (d) (e)

Figure 3.3: Motion correction and image fusion. Orthogonal slices of (a) reconstructed
SA image, (b) reconstructed LA image, (c) SA image after motion correction, (d) LA
image after motion correction, and (e) the final fused image.
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However, the motion correction relies on the coverage of the long-axis view. If only

a small number (two or three) of long-axis images are available, only a small portion

of the ventricles is included on the short-axis slices of the reconstructed LA images. In

this case, the motion correction was still able to produce a smooth ventricular shape

on the XZ slice similar to the bottom image of Figure 3.3d. But the long-axis images

cannot provide enough information to correct any possible motion along the Y axis of

the SA image. Without two-chamber images acquired from planes perpendicular to

both short- and long-axis planes, whether the motion correction is successful cannot

be fully assessed. Such a ‘motion corrected’ and fused image is shown in Figure 3.4.

(a) XY slice (b) XZ slice (c) YZ slice

Figure 3.4: The ‘motion corrected’ and fused image when only tow or three long-axis
MR images are available.

The heart only occupies a small portion of the standard ventricular MR image

and is the only moving organ. Before the motion correction, a rectangle region of

interest (ROI) for the heart must be specified to exclude the static part of image such

as chest wall and body fat. Although the ROI often has to be specified manually, it

only need to be drawn on a single slice of the first phase. This ROI reduces the size of
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the fused image and computational cost associated with all the data processing steps

after it.

Before the image fusion, the overall intensity patterns of the SA and LA images

are adjusted by histogram matching, some discontinuity of intensity pattern in the

result is inevitable but are often subtle and has little influence on the modeling of

texture and AAM segmentation.

3.1.5 Subjective Quality Assessment

A total of 127 ventricular MR scans were used, each containing long- and short-

axis images. Visual inspection was used to identify the existence of MR protocol

imperfections. It was found that 33 scans have inaccurate LV long-axis directions

(see Figure 3.1), and 58 scans have inaccurate long-axis imaging planes (see Figure

3.2).

The existence of motion artifacts and the performance of motion correction were

also assessed by visual inspection. Although quantitative evaluation of motion correc-

tion was reported in [44], such approach is operator-dependent and time-consuming.

Among the 127 MR scans tested, visual assessment found 26 scans with visible

motion artifacts similar to Figure 3.3a, and 5 scans have even larger motions. Of

the 31 scans with motion artifacts, 21 scans have enough long-axis view images so

the motion correction and image fusion performed very well and produced fused 4-D

images with similar quality as shown in Figure 3.3e. On the 96 scans without visible

motion artifacts, the motion correction was also performed by default and did not

introduce any unnecessary motion artifacts.
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However, 10 scans with motion artifacts reflected as shifting of ventricles along

the X axis only have two or three long-axis images available. The motion correction

successfully produced smooth ventricular borders on the XZ slices. Due to the limited

coverage of long-axis images, the performance of motion correction on the YZ slices

cannot be assessed. An example of such resulting image is shown in Figure 3.4.

3.2 4-D Volume Construction

3.2.1 Conventional Manual Tracing

In this study, the conventional manual tracing is especially used to refer to the

clinical approach of ventricular MR image segmentation. The ventricular borders are

manually traced by experts on original 2-D MR images as contours. Although both

long- and short-axis images can be traced, the correlation between them as point-

to-point correspondence is often not available or very difficult to utilize for human

experts. They can only rely on limited spatial and temporal context information when

switching images from different slices and phases back and forth. The limitations of

this conventional approach was discussed in detail in Chapter 1.

In this study, three ventricular borders were traced: the LV epi- and endocardial

borders and the RV epicardial border. The two LV borders were always defined as

closed contours. The manual tracing utilizes Catmull-Rom splines [8] so the operator

only needs to define and modify the control points of splines without drawing the

border pixel by pixel. The 2-D ventricular shape is represented by boundary pixels

or labeled regions. The translation between them is achieved by boundary extraction

or flood-fill and overlapping. Figure 3.5 shows the process of region overlapping. The
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3-D ventricular labeled volume is created by stacking tracings from multiple slices

together, but it still has anisotropic voxels.

(a) (b) (c) (d)

Figure 3.5: Overlapping the labeled images of (a) the union of the LV and RV, (b)
the whole LV, and (c) the LV blood pool creates (d) the multi-object labeled image
whose labels are RV, LV myocardium, and LV blood pool.

3.2.2 Shape Interpolation

Similar to image interpolation, the anisotropic labeled volume needs to be inter-

polated so the true 3-D ventricular shape can be created. Unlike image intensity, the

labels cannot be directly interpolated. Instead, the shape interpolation is achieved

in the domain of distance maps as proposed by Raya and Udupa [41]. A distance

transform DT is defined as

D(i) = DT (L(i)), (3.1)

where L is the input labeled image, D is the output distance map. The superscript

(i) indicates that only the volume labeled by i is considered. In the resulting distance

map D, each location is assigned to a value indicates its distance to the surface of the

volume of interest. Positive values are arbitrarily assigned to exterior locations and
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negative values to interior locations. The brute-force distance transform is expensive

with complexity of O(N2). A linear time algorithm proposed by Maurer [35] that

utilizes Voronoi diagram was used in this study.

After performing interpolation on the distance map, a new distance map with

isotropic voxels is created. Such distance map can be translated back to labeled

volume by an inverse distance transform DT −1 as

L(i) = DT −1(D(i)), (3.2)

where all voxels with negative distances are labeled with i and others as background.

The inverse transform is actually achieved by thresholding, where a zero threshold is

used in equation (3.2). If non-zero threshold is used, it becomes surface growing or

shrinking.

The typical slice distance of ventricular MR is 4 to 5 times that of the image pixel

size. The shape interpolation in 3-D can introduce another artifact as shown in Figure

3.6a where the 2-D ventricular shape on a interpolated slice is not a single connected

region or a ‘valid’ ventricle. In order to create ‘valid’ 3-D ventricular shapes, an

additional 3-D surface smoothing step was performed. The resulting 2-D slices of the

smoothed ventricles are shown in Figure 3.6b.

3.2.3 Volume Fusion by Shape Estimation

After shape interpolation, two sets of ventricular labeled volumes are created from

the long- and short-axis views, respectively. An example of such volumes is shown
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(a) (b)

Figure 3.6: Creating ‘valid’ ventricles. (a) Artifacts due to shape interpolation. (b)
After 3-D surface smoothing, ‘valid’ ventricular shapes are created.

in Figure 3.7a, where neither covers the ventricles completely due to the limitations

of conventional manual tracing. An additional volume fusion step was performed to

estimate the shapes of the ventricular bases and apexes and create a set of labeled

volumes that cover the ventricles completely as shown in Figure 3.7b. Two types of

shape estimation approaches were tested: scaling-and-shifting, and cookie-cutter.

(a) (b)

Figure 3.7: An example of volume fusion. (a) The surfaces of ventricles defined by
the long-axis and short-axis view labeled volumes. (b) The surfaces of the complete
ventricles after shape estimation.

The scaling-and-shifting approach assumes that in the base or apex region not

covered by the short-axis tracing, the short-axis slice ventricular shape is a scaled



www.manaraa.com

45

and shifted version of the last traced short-axis base or apex slice. The scaling

and shifting parameters are estimated from the long-axis view labeled volume. In

the cookie-cutter approach, the last traced base and apex short-axis slices are first

extended to infinity without scaling and shifting. Then the long-axis slice with the

largest ventricular areas is used as a ‘cookie cutter’ to remove the extra ‘dough’. In

both approaches, the base of the RV is arbitrarily capped at the location where the

LV and RV begins to separate in the long-axis view.

In the example shown in Figure 3.7, both shape estimation approaches created

a fused volume similar to Figure 3.7b. When tested on larger population, visual

inspection showed different resulting shapes and both approaches have their pros and

cons. Some extra quantitative analyses of the shape estimation approaches showed

a common weakness of both approaches: they are not robust enough to guarantee

the overall correctness and consistency of the fused ventricular volumes. The main

problem is only a few (two or three) long-axis images can be accurately traced by the

experts, thus their contribution to the shape estimation is limited.

3.2.4 True 4-D Manual Tracing

Although it creates approximate ventricular volumes that are better than con-

ventional manual tracing in coverage, the volume fusion can not provide high quality

independent standards for model construction and segmentation validation. A new

manual tracing application was developed to perform the manual tracing in a true

4-D context. A screenshot of this application is shown in Figure 3.8.

The input of this tracing application is the 4-D image constructed by motion
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Figure 3.8: A screenshot of 4-D manual tracing application.

correction and image fusion. For convenience, the XY slices of this 4-D image are

parallel to the short-axis imaging plane, XZ slices are parallel to the long-axis imaging

plane. The three orthogonal views of the image are displayed in the top-row panels

and the bottom-left panel where the cross hair indicates the locations of a 3-D point

in all three orthogonal slices. As a reference, the 4-D image is also defined in another

orientation whose XY slices are parallel to the long-axis imaging plane as shown in

the bottom right panel also with the point location indicated the by the cross hair.

This four-panel and cross hair display put the user in a true 4-D context of the heart
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where 3-D and 4-D navigation is unambiguous.

In this 4-D environment, any slice in the bottom-row panels can be traced – not

limited to the ones that correspond to original MR images – so large shape changes

can be accurately captured by densely traced slices. Since it is more difficult to trace

large numbers of long-axis images, the tracings on them were only used as references

to assist accurate short-axis tracing and were not used in shape interpolation. After

the 4-D manual tracing, the shape interpolation was performed using only short-axis

tracings. The resulting ventricular volumes can be loaded by the tracing application

for visual inspection as colored regions in Figure 3.8. In addition, this tracing appli-

cation can be used as a generic 4-D image viewer with volume overlay capability, a

very convenient feature for visual inspection of 4-D segmentation.

3.2.5 Quantitative Quality Assessment

Due to its inherent incomplete and inconsistent ventricle coverage, the conven-

tional tracing cannot be used as ground truth to assess the quality of 4-D manual

tracing. Without measurements from other imaging modalities, the quality of 4-D

tracing cannot be directly assessed. Fortunately, it has been shown that for normal

subjects the left ventricle stroke volume (LVSV) is about 5–6% larger than the right

ventricle stroke volume (RVSV) [4,26], the agreement of LVSV and RVSV of normal

subjects was thus used as indirect tracing quality metrics. The agreement was as-

sessed by the stroke volume ratio as LVSV/RVSV and zero-intercept linear regression

of RVSV versus LVSV. A total of 25 MR scans of normal subjects were analyzed and

three sets of ventricular volumes were measured as follows.
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• Conventional : The conventional manual tracings were performed by an expert

and verified by another senior expert and consensus of the experts was reached.

Motion correction was performed and traced ventricular borders were translated

accordingly. The ventricular volumes were then calculated from the results of

shape interpolation of the short-axis tracings.

• Fused : Starting from the conventional tracings, the long-axis tracings were used

for shape estimation and volume fusion. The cookie-cutter approach was used

since visual inspections showed it preserves the consistency of ventricle coverage

better than the scaling-and-shifting approach.

• True 4-D : The conventional tracings were loaded into the 4-D tracing program

and improved in the 4-D context. The resulting short-axis tracings were used

in shape interpolation.

Table 3.1 lists the analysis results of stroke volume agreement. The conventional

method did not produce good stroke volume agreement. The volume fusion achieved

good agreement in average but still has a large standard deviation and a poor cor-

relation. The stroke volume ratios of the true 4-D results agree to those reported in

literatures [4,26] with small standard deviation. The correlation of the 4-D results is

much improved and suggests a very good stroke volume agreement.

LVSV/RVSV linear regression
mean±SD min max slope R

Conventional 1.20±0.29 0.67 2.07 0.87 0.67
Fused 1.05±0.18 0.62 1.47 0.97 0.63
True 4-D 1.08±0.08 0.94 1.26 0.93 0.94

Table 3.1: Comparison of stroke volume agreements.
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To assess the improvement in ventricle coverages, the end-diastolic volume (EDV)

and end-systolic volume (ESV) of LV and RV were measured from the true 4-D

tracings and were compared with those from the conventional method and calculated

as percentage of increase. The analysis results are listed in Table 3.2, where the results

of 25 TOF patient scans are also included. Since more ventricular base slices were

identified and traced by the 4-D manual tracings, large part of ventricular volumes

that were missed or sacrificed for consistency by the conventional tracing method was

recovered, especially for TOF patients and at end-systoles of LV and RV.

Normals TOFs
mean±SD min max mean±SD min max

LVEDV 31%±14% 8% 72% 52%±23% 13% 113%
LVESV 52%±25% 24% 116% 90%±42% 22% 194%
RVEDV 31%±19% 1% 82% 65%±51% 15% 246%
RVESV 34%±24% 2% 95% 94%±73% 16% 366%

Table 3.2: Percentage of ventricular volume increases of 4-D method compared with
conventional tracing.

One normal subject has two same-day scans first by a GE Signa scanner with

voxel size of 1.72×1.72×6 mm, then by a Siemens Avanto scanner with voxel size of

2.08×2.08×6 mm. The ventricular volumes measured from the true 4-D tracings are

listed in Table 3.3. The true 4-D method produced consistent volumetric measure-

ments in spite of difference in scanner and imaging resolution.

To further assess the performance of different volume construction methods, the

volume-time curves (VTC) of LV and RV of the two same-day normal subject scans

are plotted for all three methods in Figure 3.9. The true 4-D method achieved not
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True 4-D LV RV
EDV ESV SV EF EDV ESV SV EF

GE scan 134 50 84 63% 156 67 89 57%
Siemens scan 126 45 80 64% 142 68 74 52%

Table 3.3: Comparison of ventricular volumes (ml) measured by true 4-D method
from two same-day scans of a normal subject.

only the best volume-time consistency but also the smoothest curves, which agree to

the continuity nature of ventricular contraction and relaxation.

conventional fused true 4-D
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(a) LV volume-time curves
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(b) RV volume-time curves

Figure 3.9: Comparison of volume-time curves of same-day scans of a normal subject.

3.3 Summary

The 4-D ground truths of ventricular images and volumes were constructed and

thus provide reliable training data for the next stage, building the 4-D AAM. The
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available long- and short-axis images were fully utilized to achieve automated motion

correction, image fusion, accurate 4-D manual tracing, and shape interpolation. Both

subjective and objective assessments showed that most of the inherent limitations of

MR imaging protocols and conventional analysis were overcome by these techniques.

The conventional manual tracing is time-consuming and the true 4-D tracing is

more tedious even with the help of the developed application. Our failed attempts of

volume fusion proved that there is no shortcut for accurate volume construction. The

quantitative assessments of true 4-D tracing quality was only applicable to scans of

normal subjects. For TOF patients with unknown disease stages and RV regurgita-

tion, the relationship between stroke volumes of LV and RV is unknown and therefore

cannot be used for quantitative assessment. Fortunately, the same set of rules were

used for normal and TOF tracings and the visual inspection of the smoothness of

the volume-time curves can also provide some assistance to the manual tracing. By

visual inspection, the true 4-D tracings of TOF showed similar quality as those of

normal subjects.
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CHAPTER 4
4-D MODEL CONSTRUCTION

4.1 Automated Landmark Generation

4.1.1 Landmarking Strategies

To represent the 3-D shape of the LV surfaces, a brute-force approach can be

used [36]. A fixed number of short-axis slices are sampled first. On each slice, the

ventricular borders are represented by points defined in the polar coordinate system

with equal angle increment. Then a 3-D mesh surface is constructed such that the

mesh triangles are built from points from two neighboring short-axis slices. The

number and distribution of short-axis slices have to be carefully chosen to make sure

that any large shape change from slice to slice is captured. This approach works

very well when the borders of the object on the arbitrarily chosen slices are roughly

circular, but applying this approach to the RV surface is rather difficult.

A previously proposed general-purpose approach is to use minimum description

length (MDL) [19]. The point correspondence is built by optimal encoding: an MDL

criterion to evaluate the quality of correspondence in terms of the ability to encode

the whole training set for a given landmark distribution. The MDL encoded models

optimize model properties such as compactness and specificity. The major drawback

of this approach is its high computational cost. As reported in [19], creating land-

marks for less than 50 2-D shapes took several hours to finish. It makes applying

such approach to 4-D shapes almost impossible.

Another way to formulate the landmarking problem is to use registration together
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with a template. Such a template-based approach was proposed by Frangi et al. [25]

and a slightly modified (for efficiency) version is shown in Figure 4.1 using 2-D shapes

for illustration. The whole process contains the following three steps.

1. Template creation: The sample shapes of the population are aligned to a com-

mon reference space using a set of affine transforms Taffine that are restricted

to rotation, translation, and scaling. The aligned shapes are then blended

(averaged) to a template shape.

2. Landmarking the template: Create landmarks on the template shape. Then

apply individual inverse transform T −1
affine to map the landmarks back to the

sample space (shown as transformed landmarks in Figure 4.1) so they are very

close to the original sample shapes.

3. Landmark propagation: Apply a set of elastic transforms Telastic to propagate

the transformed landmarks onto the the borders (surfaces) of the original sam-

ple shapes.

In this study, the actual implementations of the three steps of the landmarking

procedure are slightly different from those proposed by Frangi et al. [25]. They were

custom designed for the 4-D ventricle case where the computational cost is the major

concern.

Because the goal of shape alignment is to make the transformed landmarks as close

to the sample shape as possible, using anisotropic scaling in the affine transform is a

more appropriate choice. Note that another shape aligning step – or more precisely

the Procrustes Analysis – will be performed independently again later to build the
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affineT

affineT

affineT Telastic

elasticT

Telastic

Sample LandmarksSample Shapes Transformed LandmarksAligned Shapes

Transform Landmarks

Landmark TemplateTemplate

Figure 4.1: Flowchart of automated landmark generation.

model.

By intuition, if the sample population contains M 4-D samples (each has 16 3-D

shapes), Figure 4.1 should have M sample shapes and the resulting template is 4-D.

But when the 4-D shapes have embedded motion patterns, the 4-D alignment cannot

remove the effects of the motion completely and the resulting 4-D template could be

‘invalid’ – possible concaved ventricular base and apex. In this study, the automated

landmarking was actually performed in 3-D by treating the sample population as 16M

3-D sample shapes so a single ‘valid’ 3-D template was created. An extra benefit of

this approach is the same number of landmarks with the same surface topology are

used for all cardiac phases.
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4.1.2 Template Creation

Starting from the sample shapes represented by labeled volumes, L1,L2, · · · ,LM ,

the iterative procedure that creates the template labeled volume L is very similar

to Algorithm 2.1. It produces aligned labeled volumes, L′
1,L

′
2, · · · ,L′

M , they can be

blend into a template labeled volume L using distance transform as

L = DT −1

[
1

M

∑M

i=1
DT (L′

i)

]
. (4.1)

The transform T (i)
affine aligns sample labeled volume Li to the template L such

that the difference between L′
i = T (i)

affine(Li) and L is minimized. In this study, this

transform was found by iterative closest point (ICP) registration [5, 9]. Since the

distance transform is computed by the Voronoi diagram based algorithm [35], the

closest points to the surface of L′
i can be easily found on the Voronoi diagram.

The ICP registration requires a good initialization of the transform. When the

LV and RV are treated as a single object and landmarked together, such initialization

is trivial. Due to its unique shape, when only the LV is landmarked and modeled, its

rotation must be initialized in the context of the RV.

4.1.3 Landmarking the Template

The created template labeled volume is translated into another shape represen-

tation – triangular mesh surface. The most commonly used algorithm to extract the

object mesh surface is the marching cubes [34], it takes 3-D distance map as input

and produces iso-surface of the object consists of vertices and triangles. In this study,
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a variant of the marching cubes – the marching tetrahedrons was implemented to

directly use labeled volume with multiple labels as input without distance transform

calculation. The basic idea of marching tetrahedrons is illustrated in Figure 4.2,

where the situation of four tetrahedron vertices belong to four different objects is

treated as a ‘invalid’ case.

(a) (b)

Figure 4.2: Marching tetrahedrons. (a) Dividing a cube into six tetrahedrons. (b)
Creating surface triangles (shadowed triangles) based on different combinations of
vertex labels. Left and middle: the four vertices belong to two objects. Right: the
four vertices belong to three objects.

The customized marching tetrahedrons algorithm does not produce conventional

iso-surface, so the shapes of the voxels are kept as shown in Figure 4.3a, where the

staircase-like surface is not a true representation of the ventricular shape. The surface

smoothing filter implemented in VTK [43], vtkWindowedSincPolyDataFilter, was then

applied. It adjusts the vertex coordinates using a windowed sinc function interpola-

tion kernel to relax the mesh [47] and can be thought as a special designed low-pass

filter that eliminates the high frequency components – the staircases. Although the lo-

cations of vertices are modified during the smoothing, their movements are restricted
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within a very small range. Figure 4.3b shows the resulting smoothed surface. Note

this surface smoothing algorithm is also used to create ‘valid’ ventricular shapes after

shape interpolation.

The smoothed surface still consists of very large number of vertices and triangles.

To form the template landmarks, the number of vertices must be reduced and such a

algorithm is the surface decimation. In this study, a VTK filter vtkQuadricDecimation

was used. It uses the quadric error measurement as the error metric in eliminating

vertices and triangles. The resulting decimated surface often have ‘evenly’ distributed

vertices and triangles of similar sizes, which meet the requirements of a good set of

landmarks. Further details of this algorithm can be found in [27, 31]. Figure 4.3c

shows the resulting surface that consists of 302 vertices and 600 triangles.

(a) (b) (c)

Figure 4.3: Examples of LV epicardial template surfaces: (a) after marching tetrahe-
drons, (b) after surface smoothing, and (c) after surface decimation.

Before the details of landmark propagation are discussed, the different represen-

tations of the 3-D ventricular shape are summarized here. In the sample image space,
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the 3-D ventricular shape can be defined by: a set of 2-D contours, labeled volume,

distance map, a dense triangular mesh, and the landmarks that form the shape vector

and also a sparse mesh when surface triangles topology is defined. In the statistical

model space, the ventricular shape is defined by landmarks or the associated PCA

modes. In general, those shape representations are interchangeable and the transla-

tion from one representation to another is always feasible without losing important

shape features although losing some shape details is inevitable. Figure 4.4 shows all

the 3-D shape representations and their relationships. Note that the extension to 4-D

case is very simple – a 4-D shape is a set of 3-D shapes from all cardiac phases.

Sample Image Space

2-D contours
(tracings)

Labeled volume

Triangular mesh

Distance map

Distance 
transform

Inverse 
distance 
transform

Shape
interpolation

Surface extraction
 + smoothing

Landmarks
(shape vector)

surface
decimation

Point to surface distance

Surface slicing

Landmarks
(shape vector)

PCA shape modes

PCA Shape synthesize

Model Space

Taffine
T -1

affine

Landmark
propagation

Figure 4.4: 3-D shape representations

4.1.4 Landmark Propagation

The landmark propagation is formulated as an elastic registration problem, which

can be solved by many different ways all with various choices of cost functions to
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minimize. Most of the time, the ground truth of such elastic registration is unavailable

and the algorithm can be very expensive. In the 4-D ventricular case, reducing

the computational cost is a major concern and by utilizing anisotropic scaling in

template creation the transformed landmarks are reasonably close to the target sample

surface, so an efficient method was designed. The N landmark points are written as

p1, p2, · · · , pN , where pi = (xi, yi, zi). An elastic transform h(·) is applied to each

landmark point such that pi is modified by pi ⇐ h(pi). The transform h(·) is chosen

to be an implicit function that is actually applied by iterative shape deformation.

The cost function to be iteratively minimized is

C(p1, · · · , pN) = wsCs + wrCr, (4.2)

which is the combination of a similarity cost Cs and a regularization cost Cr with

appropriate weightings ws and wr. If the target labeled volume is L, Cs is computed

by

Cs =
∑

i
|D(pi)|2, D = DT (L), (4.3)

where D is the distance map of L computed by distance transform DT . It can be

derived that iteratively minimizing Cs is equivalent to iteratively moving pi along the

gradient direction of D(pi) such that

pi ⇐ pi + wsD(pi)
∂D(pi)

∂pi

. (4.4)
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The minimization of Cs propagates the landmarks onto the sample surface, is

independent of the neighborhood structure of any mesh vertex, and cannot preserve

the surface smoothness and the relative sizes of triangles associated with any mesh

vertex. The regularization constraint Cr is used to preserve the spatial smoothness

of the transformation. The constraint used is the Dirichlet integral that can be

calculated in the surface mesh case by

Cr =
1

2

∫
Ω

|∇h|2 =
1

4

∑
edge j

(cot αj + cot βj)|aj|2, (4.5)

where |aj| is the length of the jth edge, αj and βj are two angles associated with

the edge. Their definitions are shown in Figure 4.5 where the jth edge is the edge

between points pi and qj. It can be shown that when Cr is minimized, vertex pi must

satisfy [40]

pi =

∑
j(cot αj + cot βj)qj∑

j(cot αj + cot βj)
. (4.6)
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Figure 4.5: Vertex pi of the surface mesh and its associated neighboring vertices qj.
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Combining the optimization of Cs and Cr together, the landmark pi is iteratively

updated by

pi ⇐ pi + wsD(pi)
∂D(pi)

∂pi

+ wr

(∑
j(cot αj + cot βj)qj∑

j(cot αj + cot βj)
− pi

)
. (4.7)

The proper weightings, ws and wr are empirical values related to number of itera-

tions. It was found using more iterations and smaller weightings generate better result

by visual inspection. This implementation of landmark propagation is very fast, it

takes approximately 2 seconds for a set of less than 1000 landmarks to be propagated

using 200 iterations (ws=0.03, wr=0.01). Measured by landmark to target surface

distance, the propagation achieved sub-voxel (≈ 0.1±0.2, |max | < 1 voxel) accuracy.

4.2 Statistical Model Construction

4.2.1 Building Shape Models

In this study, after the landmarks were created, the statistical shape model was

constructed using the same procedure described in Chapter 2. The shape alignment

method used for Procrustes Analysis was the ICP registration of surface vertices as

used for template creation. Depending on the purposes of the shape model, the scaling

of the ICP registration used was isotropic or anisotropic.

• Isotropic scaling was used to create shape model for CAD – identifying the

shape difference between normal and TOF subjects. In this case, the potential

disease related shape variabilities in the ventricular height along the LV long-

axis, the short-axis shape of the ventricles (circular or ellipsoidal LV, crescent
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or half-moon-like RV) were kept intact.

• Anisotropic scaling was used to create shape model for segmentation. In this

case, some global shape features (preserved for CAD purpose as above) were

removed from the model. To start the segmentation, the mean shape was first

scaled with anisotropic scaling and fit onto the target image, it brought the

model shape much closer to the target than isotropic scaling and therefore can

speedup the segmentation convergence and reduce the chance of converging to

local minimums.

4.2.2 Building Appearance Models

The texture vector was constructed by the shape-free texture mapping in 3-D.

The 3-D Delaunay tetrahedralization was first performed on the template landmarks.

Since it always produced a convex surface from the input 3-D points without con-

sidering the actual input surface topology, some of the resulting tetrahedrons, whose

centroids are outside the actual template surface, were removed. Then the point cor-

respondence of all interior points were built upon the barycentric coordinate system.

Given a tetrahedron defined by its four vertices x1, x2, x3, and x4, any point x

inside it can be written as

x = αx1 + βx2 + γx3 + δx4, (4.8)

where α + β + γ + δ = 1 and 0 ≤ α, β, γ, δ ≤ 1 must be true.

With the coordinates of vertices written as xi = [xi, yi, zi] and the coordinates of
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the point within the tetrahedron written as x = [x, y, z], five 4 × 4 matrices can be

defined as

D0 =

[x1 1
x2 1
x3 1
x4 1

]
,D1 =

[ x 1
x2 1
x3 1
x4 1

]
,D2 =

[x1 1
x 1
x3 1
x4 1

]
,D3 =

[x1 1
x2 1
x 1
x4 1

]
,D4 =

[x1 1
x2 1
x3 1
x 1

]
,

(4.9)

from which the barycentric coordinates (α, β, γ, δ) of x is calculated by

α =
|D1|
|D0|

, β =
|D2|
|D0|

, γ =
|D3|
|D0|

, δ =
|D4|
|D0|

, (4.10)

where |D| represents the determinant of matrix D. With (α, β, γ, δ) solved for a point

x, mapping x to its corresponding point in a new tetrahedron is done by applying

equation (4.8) with new vertices and same (α, β, γ, δ) as illustrated in Figure 4.6.

X
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Figure 4.6: Shape-free texture mapping in 3-D using barycentric coordinates.

Unlike infarcted hearts, TOF does not change the texture of the ventricles – at

least there are no visible changes in MR images. The shape feature is the dominant
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difference between normal and TOF. Therefore the appearance model was only used

for segmentation and not for CAD. The AAM segmentation can converge faster with

better result if the texture of the surrounding region of the object is included since it

gives the AAM matching more 3-D context to work with.

To find the texture of the surrounding region, a virtual surface was created by

enlarging the landmark surface (the most exterior one if multiple surfaces exist) by

a small scaling ratio such as 0.2. Then the same 3-D Delaunay and barycentric

coordinate approach was used to build the texture vector. However, the new set

of vertices of the virtual surface was not explicitly modeled, thus the name virtual

surface. During the segmentation, whenever the shape changes, the virtual surface

is updated from the current shape and the texture vector is re-sampled from the

target image. As to the ventricular segmentation, if the LV and RV are modeled and

segmented separately, no virtual surface was defined for LV since the LV epicardial

surface, most part of which often has to be estimated in manual tracing, provides

the needed 3-D context information, only the RV had its associated virtual surface

defined.

4.3 Model Training and Quality Assessment

As described in Chapter 2, a sample object is expressed by three sets of parame-

ters, appearance PCA modes ba, an affine transform Ts, and a texture transform Tt.

Finding the Jacobian associated with Tt by model training is not necessary since it is

more efficient to find Tt during AAM segmentation simply by texture normalization.

The actual goal of model training is to compute Jacobian matrices for ba and Ts.
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The affine transform is defined by 9 parameters (rotation, translation, and scal-

ing). If the size of the training population is 20, the dimensionality of ba is 20 or less.

If 10 displacement values within a certain range are used in training, to cover the

entire training space, the texture difference has to be evaluated 1029 times for each

sample in the population, an impossible task for the 4-D AAM training.

To simplify the model training, we have to assume, without knowing whether it is

true or not, that these parameters are not related, so the number of texture differences

to be evaluated for each sample is reduced to 10×29=290. The training of a popu-

lation contains 20 normal LVs using this simplified scheme only took approximately

15 minutes on a PC with 2.4GHz Pentium4 CPU. If the training space is exhausted,

the estimated running time is 9.8×1021 years.
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Figure 4.7: 4-D AAM training quality tested on three strongest modes. x-axis: true
displacement, y-axis: displacement predicted by model training (∆ = 0.1σ).

Since the training procedure is much simplified, we have to test (at least once)

whether the resulting Jacobians can make correct parameter displacement predictions

in segmentation. However, the quality test has to use the same scheme as the training
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using assume-to-be-unrelated values. Figures 4.7 and 4.8 show the results of quality

tests on appearance modes and affine transform using a population of 20 normal LVs.
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Figure 4.8: 4-D AAM training quality tested on three affine transform parameters.
x-axis: true displacement, y-axis: displacement predicted by model training.

In the ideal case, the data points in those predicted-vs-true plots should approxi-

mately form a line of unit-slope and zero-intercept. In Figure 4.7, a very good linear

relation is observed with an approximate slope of 0.5 and near-zero intercept. Al-

though the slope indicates underestimated displacements, the training of appearance

modes can still be considered very good since the linearity is more important than

slope – we can always apply a constant scaling to the predicted displacements in

segmentation.

On the other hand, the quality of affine parameter training shown in Figure 4.8 is

worse, the preferred linear relationship only exists in a very small range of displace-

ments. The overall patterns in the reasonably small training space – ±10◦ rotation,

±5 voxels of translation, ±10% scaling – are more sinusoidal than linear.
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From the above training quality assessments several important rules of segmenta-

tion strategy design are derived.

• We can rely on the capability of trained Jacobians in optimizing appearance

modes but only when the model is fitted closely to the target.

• Because stronger modes are often associated with larger shape variations, they

should be optimized first.

• The trained Jacobians of the affine transform are not reliable. They might

contribute to the fine tuning of the segmentation but cannot be trusted for

model initialization.

• Brute-force optimization of affine transform is necessary for model initialization

and bring the model matching out of local minimums.

4.4 Summary

In this chapter, an automatic landmarking method is specially designed for 4-D

ventricular shapes. Based on the landmarks created, the 4-D AAM is constructed

and the quality of model training is tested. The results of model training quality

tests are considered in choosing the customized segmentation strategies in the next

chapter.
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CHAPTER 5
4-D AAM SEGMENTATION

5.1 Segmentation Strategies

Building the independent standard for model construction and segmentation val-

idation is a very time-consuming process even using the developed true 4-D tracing

application, therefore the size of the sample population is limited. In order to achieve

good segmentation results on the TOF subjects with large shape variability, the 4-D

AAM ventricular segmentations were performed using several customized strategies:

model and segment normal and TOF subjects separately, model and segment LV

and RV separately, use anisotropic scaling in AAM, and manually initialize the mean

shape onto the target image.

Modeling and segmenting normal and TOF subjects using a combined model has

some drawbacks. The mean shape of the combined model is neither a typical normal

nor TOF heart, the segmentation therefore requires more iterations to converge. The

normal hearts have less shape variability than the TOF hearts, if trained with a small

population, the combined model could easily capture most of the shape variabilities

of the TOF group and the common difference between normal and TOF groups while

some of the shape variabilities of the normal group may be lost. In addition, training

a combined model is more expensive than training two separated normal and TOF

models, each only contains half the samples as the combined model. However, using

separate normal and TOF models requires the segmentation of an unknown data to

be performed twice and then choose the best result, which can be done by visual in-
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spection or automatically comparing the model matching errors. In practice, whether

a subject is normal and TOF patient is often obvious, so only one segmentation is

actually needed. Another advantage of the separated models is when applying the

AAM segmentation method to other types of cardiac diseases, the normal model does

not need to be reconstructed and re-trained.

The left and right ventricles can either be treated together as a single entity using

a combined LV+RV model or separately. The most visible feature of the TOF on MR

image is the RV dilation that can happen at various locations of the RV as illustrated

in Figure 5.1. The RV may wrap around the LV (Figure 5.1a) or expand away from

the LV (Figure 5.1b) without changing the LV’s shape. The RV may also expand

toward the LV (Figure 5.1c) so that the LV’s shape on the short-axis view is not

circular anymore. On the long-axis view (Figure 5.1(d,e)), the RV may elevate toward

the right atrium so that the LV and RV are not side-by-side anymore. A combined

LV+RV model in this case adds some extra and unnecessary global constraints on the

relationship (relative size and position) of the LV and RV and therefore restricts the

capability of AAM segmentation. The separated LV and RV models give the AAM

segmentation more freedom in shape deformation.

Even the normal hearts have various ventricular heights along the long-axis of the

LV. During the manual tracing, it was found that the correct identification of the

ventricular bases is still difficult and can only be achieved when the atria’s shapes

are determined. Although the model contains some knowledge about the surrounding

intensity patterns of the ventricles, the atria are not entirely included. Some prelim-
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(a) (b) (c)

(d) (e)

Figure 5.1: Different types of RV dilation showing in short-axis view (a,b,c) and
long-axis view (d,e).

inary tests of the 4-D AAM segmentations and the model training quality tests (See

4.3) showed that the segmentation is very sensitive to how the mean shape is initially

fitted onto the target image. Using manual initialization and anisotropic scaling in

the model construction and segmentation were chosen due to their advantages and

flexibilities. The anisotropic scaling removes the variability in the ventricular height

from the model. It also leaves the task of identifying the ventricular bases and apexes

to the user. The manual initialization of the mean shape is more robust than auto-

matic affine transform optimization, which has be shown to have poor quality in 4.3.

Although it requires some manual operations, it only needs to be performed using

the first cardiac phase, and anisotropic scaling also helps the user to achieve better

manual initialization without knowing the shape variations associated with the PCA
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modes.

5.2 Experimental Methods

The study population consists of normal and TOF groups. The normal group

contains 25 MR scans of 24 subjects, one subject has two MR scans in the same day

on different scanners. The TOF group contains 25 MR scans of 24 patients with

repaired TOF and resultant pulmonic regurgitation, one patient has two MR scans

of six months apart on different scanners. The normal group was mostly scanned by

a Siemens Avanto scanner with 2-D resolution of 2.05±0.15 mm and slice thickness

of 6–10 mm. The TOF group was mostly scanned by a GE Signa scanner with 2-D

resolution of 1.48±0.19 mm and slice thickness of 6–10 mm. The MR imaging protocol

used in this study is the steady-state free precession. Short-axis images completely

cover the ventricles were acquired. The number of long-axis images acquired varied

within 2 to 10, with at least one image clearly showing the four heart chambers.

The original MR images went through the 4-D data construction steps described in

Chapter 3. The 4-D manual tracings were performed by a cardiologist expert and

then verified by another senior expert.

The 4-D AAM segmentations were performed using the strategies described in 5.1

and the hybrid AAM/ASM algorithm described in 2.4. In addition to the manual

affine transform initializations, the transform parameters were also fine tuned by a

random-restart hill climbing optimization [42] within a small range at the beginning

of each model matching iteration.

The performance of the segmentation was assessed using holdout validation. For
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each normal or TOF group, the 25 scans were repeatedly divided into a training

group of 20 scans and a testing group of 5 scans. The 4-D AAMs were created and

trained from the training group and the segmentations were then performed on the

testing group. The whole procedure was repeated five times until all the 25 scans

were segmented. The two same-day repeated normal scans were put into the same

testing group and the two six-month-apart TOF scans were put into different testing

groups.

In addition to the AAM and manual results, another set of synthesized results were

created for performance assessment. The samples in the testing group were aligned

to the model built from the training group and their corresponding appearance PCA

modes were calculated and restricted within ±5σ, from which the shape vectors of

the testing samples were calculated and translated to surface and labeled volume

representations to form the synthesized results. The synthesized results represent the

optimal results can be achieved by AAM segmentation using a given training group.

Then three sets of testing and reference result combinations were compared as: AAM

vs. manual, AAM vs. synthesized, and synthesized vs. manual.

The manual initialization of the mean shape was performed by setting the affine

transform parameters (rotation, scaling, and translation) to align the mean shape to

the manual results without knowing the ‘optimal’ values found by the synthesized

results. One to ten sets of parameters were tested and the best segmentation result

– identified by surface positioning error – was chosen to be the final AAM result.

The segmentation performance was assessed by three types of error metrics:
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• Surface positioning error is defined as the 3-D distance between two surfaces.

If signed error is used, negative error means the testing point is inside the

reference surface. Three ventricular surfaces were tested: the LV endocardial

(LV Endo) surface, the LV epicardial (LV Epi) surface, and the RV epicardial

surface.

• Relative label overlap is defined as the overlapping ratio of two binary label sets

A and B as A ∩ B/(A ∪ B). The three set of labels tested are: the LV blood

pool (LV Endo), the whole LV (blood pool and myocardium, LV Epi), and the

RV.

• Ventricular capacity is measured from the labeled volumes in milliliters. The

conventional end-diastolic and end-systolic volumes of LV and RV were mea-

sures as LVEDV, LVESV, RVEDV, and RVESV after the end-diastolic and

end-systolic phases were automatically identified from the results being tested.

The first two types of error metrics were measured for each cardiac phase and for all

phases combined; the testing result was also roughly divided into three ventricular

sections – apex, mid-ventricle, and base – for error assessment.

5.3 Results of Normal Hearts

5.3.1 Overall Segmentation Errors

The overall surface positioning and relative overlap errors measured form the seg-

mentations of the normal hearts are listed in Table 5.1. The signed errors show small

biases, sub-voxel average accuracies and standard deviations around 1.5 voxels. The

absolute errors show close to 1.0 voxels of average accuracies, less than 2.0 voxels of



www.manaraa.com

74

standard deviations. The segmentations of LV epicardial surface are slightly worse

than but very close to those of LV endocardial surface, showing that the AAM suc-

cessfully incorporated expert knowledge about the estimated LV epicardial surface

and utilized it in the segmentation. Comparing the errors of LV and RV segmen-

tations, the performance on RV is worse than on LV in the standard deviation of

positioning errors and average overlap ratios, it indicates that the segmentation ac-

curacy is affected by the nature of the shape. In this case the irregularity of the RV,

especially at the junction of the LV and RV, cannot be fully captured by the model

into PCA modes as global features.

Normal Surface positioning errors Overlap
LV Endo sgn voxel sgn mm abs voxel abs mm
AAM vs manual 0.13±1.38 0.27±2.83 1.11±1.71 2.27±3.50 0.77±0.03
AAM vs syn. -0.32±1.13 -0.66±2.31 0.95±1.71 1.94±3.51 0.81±0.04
Syn. vs manual 0.48±1.16 0.98±2.37 1.00±1.27 2.04±2.59 0.80±0.03
LV Epi sgn voxel sgn mm abs voxel abs mm
AAM vs manual -0.12±1.45 -0.26±2.98 1.16±1.96 2.37±4.01 0.80±0.03
AAM vs syn. -0.40±1.22 -0.81±2.51 1.06±1.92 2.17±3.95 0.82±0.04
Syn. vs manual 0.30±1.13 0.61±2.32 0.92±1.30 1.88±2.66 0.84±0.02
RV sgn voxel sgn mm abs voxel abs mm
AAM vs manual 0.04±1.64 0.09±3.37 1.36±2.14 2.79±4.38 0.66±0.04
AAM vs syn. -0.21±1.30 -0.44±2.66 1.10±1.88 2.25±3.86 0.72±0.05
Syn. vs manual 0.31±1.33 0.64±2.71 1.09±1.54 1.22±3.15 0.73±0.04

Table 5.1: The overall surface positioning and relative overlap errors of normal hearts
expressed in mean±SD.

The limitation of PCA modes as global descriptors is also reflected in the syn-

thesized vs. manual comparison. It indicates that some local shape features are not

included in the PCA modes, therefore the standard deviations of positioning errors

are larger than 1.0 voxels and the relative overlap ratios are less than 90% or even as
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low as 73% for RV.

Due to the limitation of the PCA modes, the errors of AAM vs. manual compar-

ison cannot outperform those of synthesized vs. manual comparison, which is clear

shown in Table 5.1. However, the AAM vs. synthesized comparison show no close to

perfect accuracy due to two reasons. First, the ‘optimal’ affine transform that aligns

the target and mean shapes is always hard to be manually initialized and automati-

cally optimized in 4-D case. Second, the high computational cost limits the number

of model matching iterations can be performed in practice and the real-world AAM

result is just a close-to-optimal one, possibly also a local minimum. In this study,

starting from a given initial affine transform, a whole iteration of optimizing all PCA

modes took 5 to 10 minutes on a PC with Pentium4 2.4GHz CPU when the C++

implementation was custom designed for performance.

5.3.2 Segmentation Errors of Repeated Scans

The overall segmentation errors of the repeated normal scans are listed in Table

5.2. Although having different 2-D imaging resolutions (1.72 mm for GE scanner, 2.08

mm for Siemens scanner), the positioning errors measured by millimeters showed no

clear difference as well as the relative overlap ratios. The segmentation accuracies

achieved are comparable to those listed in Table 5.1 without decrease, sometimes

even better.
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Normal Surface positioning errors Overlap
LV Endo sgn voxel sgn mm abs voxel abs mm
GE 0.05±1.26 0.09±2.17 1.01±1.58 1.74±2.72 0.81
Siemens -0.44±1.11 0.91±2.32 0.93±1.21 1.94±2.54 0.80
RV sgn voxel sgn mm abs voxel abs mm
GE -0.29±1.75 -0.51±3.01 1.46±2.48 2.51±4.26 0.66
Siemens -0.01±1.67 -0.01±3.47 1.37±2.16 2.85±4.50 0.64

Table 5.2: Segmentation errors (comparing with the manual result) of the repeated
scans of a normal subjects expressed in mean±SD.

5.3.3 Segmentation Errors of Ventricular Sections

The surface positioning and relative overlap errors for the three ventricular sec-

tions of normal hearts are listed in Table 5.3. It shows that the segmentation is more

sensitive to the orientation of the heart in ventricular apexes and bases. Since the

mid-ventricle sections are easy to trace and provide reliable information for the affine

transform initialization, the segmentation of them outperformed those of apexes and

bases and of the overall ventricles, sometimes even close to those of the overall syn-

thesized vs. manual comparison. Although the approximate locations of ventricular

apexes are easier to find on the MR images than those of the bases, achieving accurate

segmentation of these small sections may be more difficult, which explains the smaller

overlap ratios and larger positioning deviations of the apexes.

5.3.4 Temporal Curves of Segmentation Errors

In order to further analyze the segmentation performances at different cardiac

phases, the temporal curves of the surface positioning errors and relative overlap

ratios are plotted in Figures 5.2 and 5.3, each showing the curves of the mean and

standard deviation of errors.
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Surface positioning errors Overlap
sgn voxel sgn mm abs voxel abs mm

Normal LV Endo, AAM vs manual
apex 0.76±1.16 1.55±2.37 1.22±1.30 2.50±2.65 0.68±0.09
mid. -0.06±1.19 -0.11±2.43 0.98±1.60 2.01±3.27 0.83±0.04
base -0.02±1.38 -0.05±2.81 1.16±1.86 2.37±3.81 0.75±0.04
Normal RV, AAM vs manual
apex 0.85±1.77 1.74±3.64 1.71±2.00 3.51±4.11 0.46±0.08
mid. 0.01±1.42 0.02±2.92 1.24±1.92 2.54±3.94 0.72±0.05
base -0.26±1.54 -0.54±3.16 1.30±2.24 2.67±4.59 0.67±0.05

Table 5.3: Segmentation errors for three ventricular sections of normal hearts ex-
pressed in mean±SD.

Normal LV Endo
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(a) AAM vs manual (b) AAM vs syn. (c) Syn. vs manual

Figure 5.2: The surface positioning error curves of normal hearts. Bottom curves (in
red): mean error, top curves (in blue): error standard deviation.



www.manaraa.com

78

The MR acquisition is triggered by ECG gating, so the end-diastole appears at

the beginning or the end of the cardiac cycle and the the end-systole appears in the

middle of the cardiac cycle. The plotted curves of synthesized vs. manual comparison

show that the model cannot exactly capture the contraction and relaxation pattern of

the heart, especially the LV, therefore the mean LV positioning error curve has a peak

and the mean overlap ratio curves have a valley in the middle of the cardiac cycle.

The same kinds of peaks and valleys also exist in the curves of AAM vs. manual

comparison. However, the curves of AAM vs. synthesized comparison shows that the

segmentation follows the contraction and relaxation patterns contained in the model,

hence no fluctuation of the mean curves (except the RV positioning errors). All the

standard deviation curves are not affected by the contraction and expansion of the

ventricles.

5.3.5 Ventricular Capacity Agreements

The end-diastolic and end-systolic volumes of each ventricle were analyzed to-

gether by linear regression and Bland-Altman analysis. The resulting plots are shown

in Figures 5.4 and 5.5. The plotted lines in the linear regression plots represent the

linear relationship found by the regressions. The Y-axis of the Bland-Altman plots is

the percentage difference between method M1 and M2 as

100%× M2 −M1

0.5(M2 + M1)
. (5.1)
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(a) AAM vs manual (b) AAM vs syn. (c) Syn. vs manual

Figure 5.3: The relative overlap curves of normal hearts. Top curves (in red): mean
error, bottom curves (in blue): error standard deviation.

The five plotted lines in the Bland-Altman plots from top to bottom are: mean-2SD,

mean-SD, mean, mean+SD, and mean+2SD, respectively. The numerical results of

the analyses are listed in Table 5.4.

All the linear regression results show very good correlations of results (R >

0.92, p � 0.05). The distributions of errors in the Bland-Altman plots indicate the

same properties of the segmentation performance as in the analyses of the other two

error metrics: limitation of PCA modes as global descriptor, slightly worse results for

RV. How the PCA modes cannot fully capture the contraction and relaxation pat-

terns of the ventricles is more obvious here, where the ESVs are mostly overestimated

and the EDVs slightly underestimated in synthesized vs. manual comparison. It is
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Normal LV: EDV and ESV
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(a) AAM vs manual (b) AAM vs syn. (c) Syn. vs manual

Figure 5.4: Linear regression (top row) and Bland-Altman plots (bottom row) of the
normal LVEDVs and LVESVs.

also clear that the segmentation results are not the ‘optimal’ ones suggested by the

synthesized results but local minimums with underestimated ventricular capacities.

5.4 Results of TOF Hearts

5.4.1 Overall Segmentation Errors

The overall surface positioning and relative overlap errors measured from the

segmentations of TOF hearts are listed in Table 5.5. They are worse than the results

of the normal hearts. The signed errors show small biases of -1.0 to -2.0 voxels,

and standard deviations of 2.0 to 3.0 voxels. The absolute errors show 1.5 to 2.5

voxels of average errors, less than 5.0 voxels of standard deviations. Compared with

the results of normal subjects measured by millimeters, the increases in positioning
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Normal RV: EDV and ESV
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(d) AAM vs manual (e) AAM vs syn. (f) Syn. vs manual

Figure 5.5: Linear regression (top row) and Bland-Altman plots (bottom row) of the
normal RVEDVs and RVESVs.

Normal Linear regression Bland-Altman
LV Equation R Mean SD
AAM vs. manual y = 0.85x + 16.7 0.98 2.9% 13.5%
AAM vs. syn. y = 0.90x + 1.7 0.99 -9.6% 6.8%
Syn. vs. manual y = 0.94x + 17.3 0.99 13.0% 11.6%
RV Equation R Mean SD
AAM vs. manual y = 0.79x + 18.7 0.93 -5.5% 15.7%
AAM vs. syn. y = 0.80x + 12.3 0.93 -11.0% 12.8%
Syn. vs. manual y = 0.97x + 9.2 0.99 5.6% 8.4%

Table 5.4: Linear regressions and Bland-Altman analyses of the normal hearts.
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standard deviations are 1.5 to 2.0 mm, and the overlap ratios show obvious decreases

in means and increases in standard deviations.

TOF Surface positioning errors Overlap
LV Endo sgn voxel sgn mm abs voxel abs mm
AAM vs manual -1.00±2.18 -1.45±3.18 1.94±3.68 2.84±5.37 0.66±0.06
AAM vs syn. -1.59±1.91 -2.31±2.79 2.09±4.19 3.05±6.10 0.67±0.07
Syn. vs manual 0.58±1.81 0.85±2.66 1.54±2.06 2.26±3.02 0.76±0.05
LV Epi sgn voxel sgn mm abs voxel abs mm
AAM vs manual -1.70±2.25 -2.47±3.29 2.35±4.66 3.43±6.80 0.68±0.06
AAM vs syn. -2.10±2.02 -3.06±2.95 2.50±5.07 3.65±7.38 0.68±0.08
Syn. vs manual 0.35±1.77 0.52±2.61 1.46±2.11 2.15±3.09 0.81±0.04
RV sgn voxel sgn mm abs voxel abs mm
AAM vs manual -0.63±2.93 -0.85±4.28 2.45±4.30 3.56±6.22 0.61±0.06
AAM vs syn. -0.70±2.69 -0.92±3.92 2.32±4.10 3.37±5.90 0.66±0.07
Syn. vs manual 0.11±2.12 0.14±3.10 1.71±2.67 2.50±3.91 0.74±0.04

Table 5.5: The overall surface positioning and relative overlap errors of TOF hearts
expressed in mean±SD.

Although other similar observations such as the limitation of PCA modes as global

descriptor can be made as those from the results of the normal hearts, a clear difference

in the accuracies of LV endocadial and epicardial surfaces is observed in TOF patients,

indicating the existence of more variability of LV myocardium in TOF and the AAM’s

inability of capturing such changes.

5.4.2 Segmentation Errors of ‘Repeated’ Scans

The overall segmentation errors of the two six-month-apart TOF scans are listed

in Table 5.6. They were scanned with different 2-D resolutions, 1.56 mm for GE

scanner, and 2.03 mm for Siemens scanner. Unlike the repeated normal scans, the

results on Siemens scan show clear decrease in segmentation accuracy not only due to

the lower resolution but also its inaccurate LV long-axis direction in the MR image,
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which makes manual tracing and AAM segmentation more difficult.

TOF Surface positioning errors Overlap
LV Endo sgn voxel sgn mm abs voxel abs mm
1st (GE) -0.10±1.62 -0.15±2.54 1.29±2.14 2.01±3.34 0.78
2nd (Siemens) -0.97±1.62 -1.97±3.29 1.57±3.01 3.18±6.17 0.66
RV sgn voxel sgn mm abs voxel abs mm
1st (GE) -0.41±2.49 -0.65±3.89 1.97±3.44 3.07±5.38 0.64
2nd (Siemens) 0.54±2.09 1.09±4.24 1.75±2.42 3.55±4.91 0.63

Table 5.6: Segmentation errors (comparing with the manual result) of the six-month-
apart scans of a TOF patient expressed in mean±SD.

5.4.3 Segmentation Errors of Ventricular Sections

The surface positioning and relative overlap errors for the three ventricular sec-

tions of TOF hearts are listed in Table 5.7. It still shows that the segmentation is

more sensitive the orientation of the heart in ventricular apexes and bases. The TOF

patients often have larger RV (especially RV bases) than normal subjects and various

types and their combinations of RV elevation (aneurysm toward the right atrium),

which is more difficult to trace as well as for computer segmentation to find, so larger

error standard deviations are observed in the RV bases.

5.4.4 Temporal Curves of Segmentation Errors

The temporal curves of the surface positioning errors and relative overlap ratios

are plotted in Figures 5.6 and 5.7, each showing the curves of the mean and standard

deviation of errors.

Most of the observations made on the temporal curves of normal hearts still hold
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Surface positioning errors Overlap
sgn voxel sgn mm abs voxel abs mm

TOF LV Endo, AAM vs manual
apex -0.57±1.95 -0.86±2.86 1.80±3.16 2.63±4.64 0.60±0.08
mid. -1.15±1.98 -1.69±2.89 1.88±3.65 2.75±5.34 0.74±0.05
base -1.12±2.21 -1.60±3.22 2.08±3.94 3.03±5.72 0.63±0.07
TOF RV, AAM vs manual
apex 0.44±2.51 0.69±3.65 2.25±3.19 3.27±4.62 0.57±0.10
mid. -0.74±2.60 -1.04±3.80 2.33±4.11 3.39±5.97 0.70±0.07
base -1.17±2.99 -1.62±4.36 2.67±4.94 3.87±7.12 0.56±0.08

Table 5.7: Segmentation errors of ventricular sections of TOF hearts expressed in
mean±SD.
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(a) AAM vs manual (b) AAM vs syn. (c) Syn. vs manual

Figure 5.6: The surface positioning error curves of TOF patients. Bottom curves (in
red): mean error, top curves (in blue): error standard deviation.
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here, but the positioning standard deviation curve of synthesized vs. manual compar-

ison of LV (top of Figure 5.6c) shows a similar pattern as the mean error, indicating

the TOF LVs may contain more shape variability related to the contraction and

relaxation of the heart that is not captured by the model.
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(a) AAM vs manual (b) AAM vs syn. (c) Syn. vs manual

Figure 5.7: The relative overlap curves of TOF patients. Top curves (in red): mean
error, bottom curves (in blue): error standard deviation.

5.4.5 Ventricular Capacity Agreements

The end-diastolic and end-systolic volumes of each ventricle were analyzed to-

gether by linear regression and Bland-Altman analysis. The resulting plots are shown

in Figures 5.8 and 5.9. The numerical results of the analyses are listed in Table 5.8.

All the linear regression results still show very good correlations of results (R >
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TOF LV: EDV and ESV
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(a) AAM vs manual (b) AAM vs syn. (c) Syn. vs manual

Figure 5.8: Linear regression (top row) and Bland-Altman plots (bottom row) of TOF
LVEDVs and LVESVs.

0.93, p � 0.05). Similar observations can be made on the error distributions from the

Bland-Altman plots as those from the results of normal hearts. The results of TOF

patients also show larger error standard deviations and more capacity underestima-

tions in the Bland-Altman plots than the normal subjects.

5.5 Summary and Discussion

The main difficulty in achieving accurate 4-D AAM ventricular segmentations is

the small training size. Without substantially large sample population, the PCA

modes as global descriptors cannot capture all the shape variabilities existing in the

population. Although the ventricular shapes of neighboring cardiac phases are similar,

the overall contraction and relaxation pattern of the ventricles are still not fully
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1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

5 5 0

6 0 0

m a n u a l

A
A

M

y = 0 . 6 7 5 x + 2 4 . 7 ,  R = 0 . 9 3 5 ,  p = 3 . 2 4 e - 0 2 3

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

A v e ( m a n u a l , A A M )

(A
A

M
-m

an
ua

l)/
A

ve
*1

00
%

D i f :  M e a n = - 2 1 % ,  S D = 1 7 . 6 %

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

t h e o .

A
A

M

y = 0 . 7 7 5 x + 1 0 . 8 ,  R = 0 . 9 3 4 ,  p = 4 . 0 2 e - 0 2 3

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

A v e ( t h e o . , A A M )

(A
A

M
-t

he
o.

)/
A

ve
*1

00
%

D i f :  M e a n = - 1 8 % ,  S D = 1 5 . 6 %

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

5 5 0

6 0 0

m a n u a l

th
eo

.

y = 0 . 8 6 2 x + 1 9 . 7 ,  R = 0 . 9 9 2 ,  p = 3 . 2 9 e - 0 4 4

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0
- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

A v e ( m a n u a l , t h e o . )

(t
he

o.
-m

an
ua

l)/
A

ve
*1

00
%

D i f :  M e a n = - 3 % ,  S D = 8 . 1 1 %
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Figure 5.9: Linear regression (top row) and Bland-Altman plots (bottom row) of TOF
RVEDVs and RVESVs.

captured by the AAM using a limited population.

By using the custom designed segmentation strategies, the 4-D AAM method

successfully produced very good segmentation results on normal hearts. An example

of the segmentation result at the first and eighth cardiac phases is shown in Figure

5.10 in three orthogonal views. On the specific short-axis slice shown, the manual

result does not represent the true RV shape in the image due to shape interpolation,

while the AAM segmentation of RV is slightly more agreeable to the the true shape.

In the long-axis view, the segmented RV is lower than the manual result, especially

on the eighth phase, showing that the AAM had some difficulties in identifying the

location of RV base and following the contraction of RV. Also in the long-axis view,
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TOF Linear regression Bland-Altman
LV Equation R Mean SD
AAM vs. manual y = 0.65x + 12.5 0.96 -22.0% 14.9%
AAM vs. syn. y = 0.69x + 3.1 0.96 -32.0% 11.9%
Syn. vs. manual y = 0.92x + 16.1 0.98 11.0% 11.8%
RV Equation R Mean SD
AAM vs. manual y = 0.68x + 24.7 0.94 -21.0% 17.6%
AAM vs. syn. y = 0.78x + 10.8 0.93 -18.0% 15.6%
Syn. vs. manual y = 0.86x + 19.7 0.99 -3.0% 8.1%

Table 5.8: Linear regressions and Bland-Altman analyses of TOF hearts.

image AAM manual synthesized

Figure 5.10: An example of a normal heart. Top row: first phase, bottom row: eighth
phase.
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although the image indicates slight tilting of the LV, it was not exactly captured by

the manual tracing and synthesized result on the first phase, therefore not reflected

in the AAM segmentation that is initialized based on the first phase manual result.

In spite of these localized inaccuracies, the AAM segmentation still produced a very

satisfactory result in the overall sense.

When AAM is used to capture larger and more complex shape and texture vari-

abilities of the TOF hearts. The same kinds of localized inaccuracies are also observed

but worse than those of the normal hearts. An example of the segmentation result

at the first and eighth cardiac phases is shown in Figure 5.11 in three orthogonal

views. It is more obvious that not all the RV dilation patterns are captured by the

model and hence reflected in the different RV shapes between synthesized and manual

results. The RV dilation changes the LV’s shape in a complex way such that at the

shown short-axis slice, the LV is ellipsoidal on the first phase but still close to circu-

lar on the eighth phase, and this shape deformation is only partially reflected in the

segmentation result. Again, in spite of these localized inaccuracies, some important

RV shape variability such as the dilation in the apex region is successfully captured

by the model and found by the AAM segmentation with still satisfactory result.

In both the results shown in Figures 5.10 and 5.11, the PCA modes as global

descriptors do show their strengths in smoothing out some artifacts such as bumpy

surfaces in the manual results, which are introduced by the shape interpolation and

small inaccuracies in manual tracings, and therefore produce more plausible ventric-

ular surfaces.
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image AAM manual synthesized

Figure 5.11: An example of a TOF heart. Top row: first phase, bottom row: eighth
phase.

image AAM manual synthesized

Figure 5.12: An example of a TOF heart with severe RV dilation. Top row: first
phase, bottom row: eighth phase.
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The image and results of a TOF patient suffers from severe RV dilation is shown

in Figure 5.12. This is the only manually traced patient who have most types of

RV dilation except aneurysm toward the right atrium. No matter which currently

available training group is used, this TOF is always a outliner and the model cannot

capture the severe shape changes, indicated by the larger difference between synthe-

sized and manual results. However, by setting some extreme anisotropic scaling values

in the initialization of the affine transform, the resulting segmentation is closer to the

manual result than the associated synthesized result. If the independent standard of

this subject is unknown, the segmentation although inaccurate provides a very good

starting point for any further manual modification on it.

In summary, although mainly affected by small training population, the 4-D AAM

still produced very good segmentation results in a global sense. However, the 4-

D AAM did not fully capture the contraction and relaxation pattern of the heart

and therefore may preventing the ventricular capacity based function indices such

as ejection fraction and volume-time curve from representing the true nature of the

cardiac motion.



www.manaraa.com

92

CHAPTER 6
COMPUTER-AIDED DIAGNOSIS

The final goal of the cardiac MR image analysis is the computer-aided diagnosis

derived from the computer segmentation results. Using the 4-D AAM segmentation

results, two novel ventricular function indices were derived as PCA shape modes and

ventricular volume-time curves. The capabilities of using these indices to achieve

normal/TOF classification and potential TOF disease progression identification are

explored in this chapter. For comparison, the capability of the conventional index,

ventricular ejection fraction (EF), is also tested.

6.1 Experimental Methods

In addition to the 25 normal and 25 TOF scans used for the AAM segmentation

validations, 10 second-year scans of normal subjects and 9 second-year scans of TOF

patients were added to the study population. This 69-scan population contains 24

normal subjects and 24 TOF patients. Among them, 9 normal subjects have first-

and second-year scans, one normal subject has two repeated first-year scans and

one second-year scan; one TOF patient has two first-year scans of six months apart

and one second-year scan. The second-year scans were segmented by the 4-D AAM

methods using models created from the manual tracing results of all the 25 first-years

normal/TOF scans.

From the segmentation results of manual tracings and 4-D AAM, the ejection

fractions of the RV as RVEF, and the volume-time curves (VTC) of the LV, RV,

and LV and RV concatenated were analyzed. The magnitudes of the VTCs were
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normalized within the range of [0, 1] to remove the effects of the global scaling. Note

that in the concatenated LV+RV VTCs, the relative size differences in LV and RV

were kept. The PCA was applied to the VTCs that were treated as vectors of length

16 or 32, and the PCA modes of the VTCs were classified.

Two statistical shape models of the combined LV and RV, one from the manual

tracing results of 50 scans, one from the AAM results of the 69 scans, were created.

The isotropic scaling was used in the Procrustes Analysis to keep the information

about the relative size difference of LV and RV and the variability in ventricular

height along the long-axis in the resulting models. The shape variation associated

with the strongest PCA modes were visualized and inspected, and then the PCA

modes were classified.

The normal/TOF classifications using the PCA modes (of shape or VTC) were

performed using leave-one-out validation, and the classification methods were k-

nearest neighbor (k-NN) [22,24] and linear discriminant analysis (LDA) [22,23] using

various number of PCA modes. The performance of the classification was measured

by classification rate – the percentage of scans correctly identified as normal or TOF

patients.

The differences between the first- and second-year scans were analyzed using vari-

ous number of shape PCA modes. The differences were first measured as the absolute

distance between two scans in the shape model space. In this model space defined

by PCA modes, an M -dimensional plane (M is the number of strongest PCA modes

used) that separates the normal and TOF was then found by the LDA method. The
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identified plane serves as the decision boundary for normal/TOF classification, its

normal direction is approximately pointing from the centroid of normal scans to that

of the TOF patient scans in the model space, such that any scan with negative dis-

tance to the decision boundary is classified as normal and positive distance means

TOF patient. The difference between the first- and second-year scans (2nd − 1st) is

defined as the change of their distances to the identified plane, this change is referred

as the relative distance. The definitions of absolute and relative scan distances are

illustrated in Figure 6.1 in the model space of two PCA modes.

Normals

PatientsDecision boundary

Mode 1

M
od

e 
2

Boundary's
normal direction

Absolute

Relative

Absolute

Relative

Figure 6.1: The definitions of absolute and relative scan distances.

6.2 RVEF Analysis

The RVEFs of 50 MR scans calculated from the conventional manual tracings,

true 4-D manual tracings, and AAM segmentations are plotted in Figure 6.2 with

their means and standard deviations listed. The results in Figure 6.2(a,b) agree to
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the clinical fact that TOF patients generally have smaller RVEFs due to the dilated

RV but the RVEF itself cannot fully distinguish normal and TOF patients. Also note

that since the true 4-D tracings reduced some uncertainties in identifying RV bases,

the resulting RVEFs have smaller standard deviation than that of the conventional

method.

1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5
R V E F  ( % )

C o n v e n t i o n a l
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T O F
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R V E F  ( % )
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normal: 51%±7% normal: 51%±6% normal: 45%±2%
TOF: 48%±12% TOF: 41%±7% TOF: 34%±1%
(a) Conventional (b) 4-D manual (c) AAM

Figure 6.2: Distributions of RVEFs

Although Figure 6.2c indicates that there is a clear distinction between normal

and TOF patients in their RVEFs, it does not represent the real difference of normal

and TOF in RVEF. As seen in the segmentation performance assessments in Chapter

5, the 4-D AAM cannot exactly follow the cardiac motion pattern. Several randomly

selected VTCs of RV in Figure 6.3(a,b) further illustrates such limitation of 4-D AAM

segmentations, where the large variability in the end-systolic time of the TOF RV is

not fully captured by the model and consequently not reflected in the segmentations.

Such limitation of the model also exists in LV as shown in Figure 6.3(c,d). In the
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AAM results for both LV and RV, the end-systole of TOF hearts is always earlier

than the normal hearts.
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Figure 6.3: Several VTCs created from manual and AAM segmentation results. Red
thick lines are TOF VTCs and blue fine lines are normal VTCs.

The classification performance achieved by using RVEFs is listed in Table 6.1,

where the number of scans correctly classified and the classification rates are both

shown. It indicates that the true 4-D manual segmentation produced better RVEF

measures than conventional manual tracing such that the decreasing of RVEF in TOF

patients is mostly captured. Although the AAM results achieved 100% normal/TOF

classification, the RVEF measured from AAM segmentation amplified the difference

between normal and TOF hearts incorrectly as described earlier.
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Method Normal TOF Method Normal TOF
Conventional, 25 Normals, 25 TOFs
1-NN 12(48%) 18(72%) LDA 14(56%) 12(48%)
Manual, 25 Normals, 25 TOFs
1-NN 23(92%) 22(88%) LDA 21(84%) 20(80%)
AAM, 25 Normals, 25 TOFs
1-NN 25(100%) 25(100%) LDA 25(100%) 25(100%)

Table 6.1: The classification performance achieved using RVEFs.

6.3 VTC Analysis

The classification performance achieved using the VTCs derived from the true 4-D

manual tracings is listed in Table 6.2. It suggests that the TOF changes the cardiac

motions of both LV and RV. It is interesting that although most of the time the LV

shows no clear deformation, its cardiac motion pattern might be changed more than

that of the RV. When the VTCs of LV and RV are combined, the RV dilation is

included in the combined VTCs so classification rates of 100% for normal subjects

and 96% for TOF patients are achieved.

Method Normal TOF Method Normal TOF
Manual LV VTC, 25 Normals, 25 TOFs
1-mode 3-NN 22(88%) 20(80%) 1-mode LDA 19(76%) 17(72%)
2-mode 5-NN 20(80%) 22(88%) 2-mode LDA 19(76%) 15(60%)
Manual RV VTC, 25 Normals, 25 TOFs
1-mode 1-NN 16(64%) 15(60%) 4-mode LDA 17(72%) 15(60%)
3-mode 1-NN 17(72%) 17(72%) 5-mode LDA 16(64%) 15(60%)
Manual LV+RV VTC, 25 Normals, 25 TOFs
1-mode 1-NN 22(88%) 23(92%) 1-mode LDA 24(96%) 23(92%)
1-mode 5-NN 24(96%) 24(96%) 2-mode LDA 25(100%) 24(96%)

Table 6.2: The classification performance achieved using PCA modes of VTCs of the
manual volumes.

Using the AAM segmentation results of the same 50 MR scans, the achieved
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classification performance is listed in Table 6.3, where the best classification rate

achieved for normal and TOF is 100%. Similarly, 100% normal/TOF classificaiton

was achieved when the AAM results of all 69 MR scans were used. But again, these

classification results do not represent the true difference between normal and TOF

in VTCs due to the limitation of AAM segmentation in capturing cardiac motion

pattern.

Method Normal TOF Method Normal TOF
AAM LV VTC, 25 Normals, 25 TOFs
1-mode 1-NN 23(92%) 22(88%) 1-mode LDA 24(96%) 23(92%)
2-mode 1-NN 25(100%) 25(100%) 2-mode LDA 25(100%) 25(100%)
AAM RV VTC, 25 Normals, 25 TOFs
1-mode 1-NN 25(100%) 25(100%) 1-mode LDA 25(100%) 25(100%)
AAM LV+RV VTC, 25 Normals, 25 TOFs
1-mode 1-NN 24(96%) 24(96%) 1-mode LDA 24(96%) 25(100%)
3-mode 1-NN 25(100%) 25(100%) 5-mode LDA 25(100%) 25(100%)

Table 6.3: The classification performance achieved using PCA modes of VTC of the
AAM segmented volumes.

The volume-time curves only partially describe the complex cardiac motion by

the changes of a global measure – the ventricular capacity. The shape of the VTCs

are mainly defined by the end-diastolic and end-systolic phases but finding these

phases correctly in manual tracings can be difficult. There are two ways to find

them, one is to observe the changes of ventricular areas on a fixed short-axis slice

and define the phases with maximal and minimal ventricular areas as end-diastole

and end-systole, respectively. The other way is to calculate the ventricular volumes

of all phases and define the end-diastole and end-systole as phases with maximal and
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minimal volumes. In practice, the phases identified by both methods often do not

exactly agree to each other. The short-axis slice method ignores the possible cardiac

motion of the heart along the long-axis so the images of different phases may actually

come from slightly different parts of the ventricles. The volume calculation is very

sensitive to the identification of the ventricular base, which is always difficult and can

dramatically change the resulting ventricular volume measures.

The VTCs of the manual tracings may not represent the real cardiac motion

pattern and the AAM segmentation has its limitation in capturing all possible motion

pattern using a small training population. Although the classification results listed

above indicate the existence of a difference between the volume-time curves of the

normal and TOF patients, finding the true form of this difference will require larger

population, more accurate identifications of end-diastolic and end-systolic phases in

both manual and computer segmentations. And such requirements also apply to any

further study of the ejection fraction.

6.4 Shape Model Analysis

Figure 6.4 shows the shape variations associated with the first PCA mode of the

shape model created from the manual tracings of 50 MR scans. It can be seen that

the first PCA mode is mostly related to the variability of the size of the RV with

respect to the LV so the main difference between normal and TOF is captured in this

mode. Figure 6.5 shows the shape variations associated with the second mode, this

mode mostly represents the variability of the ventricular height along the long-axis.

Figures 6.6 and 6.7 show the shape variations associated with the first and second



www.manaraa.com

100

Manual, mode 1, phase 1

Manual, mode 1, phase 8

(a) mean-2σ (b) mean (c) mean+2σ

Figure 6.4: Shape variations associated with the first PCA mode of the shape model
created from manual tracings.

Manual, mode 2, phase 1

(a) mean-2σ (b) mean (c) mean+2σ

Figure 6.5: Shape variations associated with the second PCA mode of the shape
model created from manual tracings.
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PCA modes of the shape model created from AAM segmentations of the same 50

MR scans. In spite of the various segmentation inaccuracies, the first PCA mode still

represents the main difference between normal and TOF patients in a very similar way

as in Figure 6.4. The shape variations associated with the second PCA mode mainly

represent the changes of the relative locations of LV and RV, which are different from

those in Figure 6.5.

AAM, mode 1, phase 1

AAM, mode 1, phase 8

(a) mean-2σ (b) mean (c) mean+2σ

Figure 6.6: Shape variations associated with the first PCA mode of the shape model
created from AAM segmentations.

From the same set of 50 MR scans but two different shape models created from

manual tracings and AAM segmentation results, the distributions of the first and
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AAM, mode 2, phase 1

(a) mean-2σ (b) mean (c) mean+2σ

Figure 6.7: Shape variations associated with the second PCA mode of the shape
model created from AAM segmentations.

second PCA modes are shown in Figure 6.8, where the lines with arrows indicating

the changes of PCA modes of the repeated scans. Although the difference of repeated

TOF scans in PCA modes of AAM results is larger than that of the manual results, the

shape variations associated with the second mode are different between the two models

as shown in Figures 6.5 and 6.7, and the specific AAM segmentation is not guaranteed

to be the optimal one. However, the distributions of shape modes show that the

shape model created from the AAM segmentation results successfully captures the

main difference between normal and TOF in the first shape mode. Compared with

the model created from manual tracings, the gap between normal and TOF is not

increased in Figure 6.8b, which means the shape PCA modes created from the AAM

segmentations result do not incorrectly amplify the difference between normal and

TOF hearts.

Table 6.4 lists the classification performance achieved using shape PCA modes.

Unlike the classification results listed in Tables 6.2 and 6.3, there is no clear distinction
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Figure 6.8: Two strongest shape PCA modes of manual and AAM results.

between the classification performances of models created from manual tracings and

AAM segmentations. It shows that the shape model is a more robust ventricular

feature representation than the VTCs when various segmentation inaccuracies exist.

Using the manual segmentation results, all normal subjects and 92% of the TOF

patients can be correctly identified. Using the AAM segmentation results, all normal

and TOF subjects can be correctly classified only using five PCA shape modes.

Method Normal TOF Method Normal TOF
Manual, 25 Normals, 25 TOFs
1-mode 3-NN 24(96%) 23(92%) 1-mode LDA 25(100%) 22(88%)
2-mode 1-NN 23(92%) 23(92%) 3-mode LDA 25(100%) 21(84%)
3-mode 1-NN 25(100%) 23(92%) 5-mode LDA 24(96%) 21(84%)
AAM, 25 Normals, 25 TOFs
1-mode 1-NN 24(96%) 24(96%) 1-mode LDA 25(100%) 22(88%)
2-mode 1-NN 24(96%) 24(96%) 3-mode LDA 25(100%) 24(96%)
3-mode 1-NN 25(100%) 25(100%) 5-mode LDA 25(100%) 25(100%)
AAM, 35 Normals, 34 TOFs
1-mode 1-NN 33(94%) 32(94%) 1-mode LDA 35(100%) 30(88%)
3-mode 5-NN 34(97%) 32(94%) 3-mode LDA 35(100%) 32(94%)
5-mode 5-NN 35(100%) 34(100%) 5-mode LDA 35(100%) 34(100%)

Table 6.4: The classification performance achieved using shape PCA modes.
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Figure 6.8 also shows that the PCA modes of TOF patients covers a larger range

than those of normal subjects so the PCA modes can be potentially used as disease

status indicators. Figure 6.9 shows the changes of several strongest PCA modes of

the subjects with first-year and second-year scans, where the shown vectors indicating

the changes from first-year to second-year scans. Although the length and direction

of these vectors are approximately random. Their projections on the first mode – the

most important mode for normal/TOF separation – show that the changes of normal

subjects are smaller than those of the TOF patients.
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Figure 6.9: Distributions and changes of the three strongest shape PCA modes of
AAM results.

The changes of PCA modes in the model space were measured by absolute and

relative distances, whose definitions are illustrated in Figure 6.1. The distribution,

reported as mean and standard deviation, of changes of PCA modes are listed in

Table 6.5.
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Absolute Relative
Modes Normal TOF Normal TOF

1 51±34 83±53 -4±64 4±103
2 141±87 165±67 6±60 0±95
3 197±77 183±68 -24±53 -4±91
4 208±71 206±74 -21±53 -6±89
5 226±65 215±75 1±47 -6±72

Table 6.5: The changes of PCA modes of subjects with multiple scans.

If only one PCA mode is used, the absolute changes of normal subjects show

smaller mean and standard deviation than those of the TOF, which agree to the

observations made on Figure 6.9. When more than one PCA modes are used, the

difference in absolute changes of normal and TOF is almost invisible due to the fact

that the AAM segmentation results are just local minimums in most of the time

and the vectors of PCA mode changes are not directly related to those seen by the

classifiers.

On the other hand, the relative change measures the changes from the perspective

of the specific classifier and therefore better describes any potential status changes

of the subjects. It can be seen from Table 6.5 that the normal subjects consistently

show smaller variances of relative changes than TOF patients. Eight of the ten mean

relative changes show no tendency of normal changing to TOF and vice versa. The

other two larger mean relative changes are from the normal subjects with the negative

values indicating a tendency of normal subjects move away from the decision surface

and thus much less likely to be classified as TOF subjects.
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6.5 Summary and Discussion

The ventricular function indices of RVEF and volume-time curves have clear and

easy to understand physiological meaning. The normal/TOF classification performed

using these indices indicated some difference between normal and TOF patient. How-

ever, these indices contain limited amount of information and are sensitive to the

manual and computer segmentation errors. Further study of them is only possible

when computer segmentations with improved accuracy, especially in capturing the

cardiac motion, are available.

The shape PCA modes on the other hand turned out to be less sensitive to the

segmentation errors and achieved complete normal/TOF classification. The longitu-

dinal analysis showed that the normal subjects exhibit less variability in the shape

PCA modes than TOF subjects. Therefore the PCA modes can be potentially used

as TOF disease status determinants.

The capability of all these indices in computer-aided diagnosis is still limited

by the current small population and segmentation inaccuracies. But the current

analysis results already showed their strengths in identifying subtle difference between

normal and TOF patients. If larger population is analyzed, the accuracy of AAM

segmentation can be improved and consequently the performance of the CAD.
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CHAPTER 7
CONCLUSION

7.1 Achieved Goals

The four goals of this work are listed in 1.4 on page 12 as: 4-D data construction,

4-D model construction, 4-D AAM segmentation, and computer-aided diagnosis. The

reviews of what have been achieved are as follows.

7.1.1 4-D Data Construction

The image fusion procedure overcame most of the inherent limitations of cardiac

MR imaging and produced high-quality 4-D ventricular images with isotropic voxels,

complete ventricle coverage, and no respiratory motion artifacts. The whole procedure

only requires a few user interactions of specifying the correct MR sequence description

and an approximate ROI on a single phase. If only a few (two or three) long-axis

images are available, the motion correction algorithm cannot completely remove all

possible respiratory motion artifacts, but the algorithm is very robust and did not

introduce any additional new artifacts.

The developed 4-D manual tracing application provided the user with a true

4-D context of the heart based on the high-quality 4-D image constructed by the

developed image fusion technique. In this 4-D context, finding the correct locations

of the ventricular bases and apexes became much easier. The direct tests on ventricle

coverage improvement and indirect tests on the stroke volume agreement of normal

hearts showed that the 4-D manual tracing application produced more accurate and

reliable results than conventional tracings performed in a 2-D or pseudo 3-D context.
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The manual tracing of ventricular images is still a time-consuming process. Trac-

ing a complete 16-phase cardiac cycle takes approximately four to five hours depend-

ing on the image quality. Although the approximate locations of ventricular bases

and apexes are easier to find in the 4-D context, determining the ventricular bor-

ders accurately in these regions is still difficult due to the variability in the ventricle

orientation in the image.

The volume fusion by distance interpolation is very efficient. However, in order

to generate ‘valid’ short-axis cross sections, an expensive 3-D smoothing step has to

be performed that takes 5 to 10 minutes on a 4-D data set.

7.1.2 4-D Model Construction

The most difficult but essential part of the model construction is the automatic

landmarking. Its most important requirement is the point correspondence. Designed

within a template-based framework, the landmarking problem is translated into a

series of registration problems that can be solved by many methods but the ground

truth is often inaccurate or hard to define. In this 4-D case, theoretical correctness

had to be sacrificed for efficiency in choosing the appropriate registration algorithm.

The chosen algorithm using a cost function of simple distance measure combined

with regularization constraint proved to be highly efficient and the resulting models

correctly captured the important shape and texture features of the ventricles. Using

these models, the segmentation and disease classification performed in later stages all

achieved very good results.

The training quality of the constructed 4-D AAMs were fully tested and it was
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found that the conventional model matching error metrics – RMS of texture differ-

ence – can guide the PCA appearance modes correctly toward their optimums but

cannot lead the model-to-image space transform correctly due to the complex sur-

rounding anatomic structures existed in the cardiac MR images. It caused the AAM

segmentation to be very sensitive to the model initialization.

7.1.3 4-D AAM Segmentation

The inherent property of the 4-D AAM as a model-based segmentation method

is that it only includes global descriptions of shape and appearance variabilities thus

cannot achieve good local segmentation accuracy. In addition, the size of the training

population directly affects the segmentation performance. The customized segmenta-

tion strategies and hybrid of AAM and ASM approach were used to overcome some

of the limitations of the 4-D AAM method. The segmentation results tested on 25

normal and 25 TOF patient scans showed good segmentation accuracies measured

by signed surface positioning errors. On normal subjects, the average signed errors

are 0.3±2.3 mm for LV endocardial surface and 0.1±3.4 mm for RV surface. On

TOF patients with large shape variability, the errors are -1.5±3.2 mm for LV endo-

cardial surface and -0.9±4.3 mm for RV surface. Other error metrics such as relative

overlapping also indicated good segmentation accuracies.

Further detailed analyses of the measured error metrics showed that the AAM

segmentation cannot exactly identify the cardiac motion pattern such that the seg-

mentation errors on the end-systolic phase were slightly larger than those on the

end-diastolic phase. The variability in the ventricle orientation also affected the seg-
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mentation accuracy such that the errors on the ventricular bases and apexes were

slightly larger than those on the mid-ventricle sections.

Overall, the segmentation results produced by the 4-D AAM were very good and

the subsequent computer-aided diagnosis achieved similar performance as that using

manual tracing results when PCA shape modes were analyzed. The segmentation

only needs to be initialized on the first cardiac phase with user interaction. The seg-

mentation of a 4-D image using several (less than five) different initializations can be

finished within 30 to 45 minutes on a PC with 2.4 GHz Pentium4 CPU depending on

the size of the image. The required manual modifications of the computer segmen-

tation results are mostly global fine-tunings of the rotation, scaling and translation

and some local fine-tunings of surfaces at small portions of the ventricles.

7.1.4 Computer-Aided Diagnosis

Using the ventricular volume-time curves derived from the computer segmentation

results, 100% normal/TOF classification was achieved with simple classifiers of k-

NN and LDA. Compared with the classification results using VTCs derived from

the manual tracings, it was found that the inability of following cardiac motion in

the computer segmentation amplified the subtle difference between normal and TOF

patients. However, the VTCs derived from the manual tracings showed that TOF

changed the caridac motion patterns of both left and right ventricles and the changes

were captured by VTCs.

The analyses performed on the shape PCA modes showed that they were less

sensitive to the various segmentation errors. The main difference of normal and TOF



www.manaraa.com

111

patients was correctly captured by the strongest shape modal index of both models

created from manual and computer segmentation results and was not amplified by

the computer segmentation. The distribution of shape modal indices showed a clear

distinction between normal and TOF patients and 100% normal/TOF classification

was achieved.

Further longitudinal analyses performed on subjects with multiple annual MR

scans showed that the TOF patients exhibited larger variances in the changes of the

shape modal indices than normal subjects, which demonstrated the potential of using

the modal indices as disease status determinants.

7.2 Summary

In conclusion, all the four proposed goals of this thesis were achieved. A complete

4-D cardiac MR image analysis pipeline was implemented. The pipeline input is a

set of (usually hundreds of) 2-D MR images scanned and stored as DICOM files.

It not only produced accurate 4-D segmentation of both left and right ventricles,

but also produced the computer-aided results in the form of novel 4-D ventricular

function indices that can be used to achieve 100% normal/TOF classification, identify

subtle but important disease characteristics, and potentially early detection of disease

progression.
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